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We present large-scale dynamical simulations of electronic phase separation in the single-band double-
exchange model based on deep-learning neural-network potentials trained from small-size exact
diagonalization solutions. We uncover an intriguing correlation-induced freezing behavior as doped holes
are segregated from half filled insulating background during equilibration. While the aggregation of
holes is stabilized by the formation of ferromagnetic clusters through Hund’s coupling between charge
carriers and local magnetic moments, this stabilization also creates confining potentials for holes when
antiferromagnetic spin-spin correlation is well developed in the background. The dramatically reduced
mobility of the self-trapped holes prematurely disrupts further growth of the ferromagnetic clusters, leading
to an arrested phase separation. Implications of our findings for phase separation dynamics in materials that
exhibit colossal magnetoresistance effect are discussed.
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The subject of phase separation dynamics is of signifi-
cant importance in many branches of physics, materials
science, and biology [1–5]. Dynamically, phase separation
occurs when a homogeneous system is placed in an out-of-
equilibrium state due to a rapid change in thermodynamic
variables, such as temperature. The system then evolves
toward an inhomogeneous state of coexisting phases. This
intrinsically nonequilibrium and nonlinear process involves
the formation, growth, and coarsening of domains of
ordered phases. Substantial progress has been made in
understanding the phase separation kinetics over the past
few decades. In particular, it has been shown that phase
separation at late times exhibits a dynamical scaling and is
controlled by a characteristic length scale L, which follows
a power law LðtÞ ∼ tα, where the growth exponent α
depends mainly on dimensionality and conservation of
the order parameter.
Phase separation also plays a crucial role in the func-

tionality of strongly correlated electron systems [6–17].
A case in point is the complex inhomogeneous states
observed in manganites and magnetic semiconductors
that exhibit the colossal magnetoresistance (CMR) effect
[12–17]. These nanoscale textures arise from the segrega-
tion of hole-rich ferromagnetic clusters from the half filled
antiferromagnetic domains [18–20]. An intriguing scenario
for CMR is the field-induced percolating transition of
metallic nanoclusters in such a phase-separated state
[21,22]. Because the number of doped carriers is con-
served, the segregation process of such conserved field was
first studied in the classic works of Lifshitz and Slyozov
[23] and Wagner [24] (LSW), who predicted a growth
exponent of α ¼ 1=3.

Despite extensive works on properties of mixed-phase
states in CMR materials, the kinetics of phase separation
driven by electron correlation has yet to be investigated.
Important questions, such as whether the phase separation
exhibits dynamical scaling and does the late-stage domain
growth indeed follow the LSW power law, remain unan-
swered. On the theoretical side, the lack of progress is
partially due to the difficulty in performing large-scale
dynamical simulations of electronic phase separation.
While several numerical techniques, such as molecular
dynamics and the phase-field method [25–27], have been
developed to simulate pattern formation in material systems
such as binary alloys or polymers, conventional approaches
often rely on empirical energy models and cannot describe
the intricate electron correlation effects. A comprehensive
modeling of correlation-induced phase separation requires
properly incorporating microscopic electronic processes into
mesoscopic spatial-temporal pattern dynamics. Yet, such
multiscale approaches are limited to small systems due to the
expensive repeated electronic structure calculations.
In this Letter, we overcome the difficulties of multiscale

modeling by applying machine-learning (ML) methods to
enable large-scale simulations of phase separation phenom-
ena in the double-exchange (DE) model [28–30], which
plays a center role in the modeling of CMR materials.
The central idea of our approach is to develop deep-
learning neural networks (NNs) that emulate the time-
consuming exact diagonalization required for computing
the exchange forces on spins. In this respect, the NNs can
be viewed as a complex empirical potential model, which
offers the accuracy of quantum calculations. We consider
the single-band DE model on a square lattice,
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iασαβĉiβ; ð1Þ

where ĉ†iα=ĉi;α are creation and annihilation operators,
respectively, of electron with spin α ¼↑;↓ at site i, H.c.
stands for the Hermitian conjugate, repeated indices α, β
implies spin summation, hiji indicates the nearest-neighbor
pairs, tnn is the nearest-neighbor electron hopping constant,
JH is the local Hund’s rule coupling between electron spin
and local magnetic moment Si, which are assumed to be
classical spins of length S ¼ 1. The square-lattice DE
model has been extensively studied theoretically [31–
35]. In particular, when the system is slightly hole doped
from half filling, a mixed-phase state consisting of hole-rich
ferromagnetic puddles embedded in the half filled anti-
ferromagnetic insulator emerges as a stable thermodynamic
phase at strong Hund’s coupling [32–34].
The evolution of the DE system in the adiabatic limit,

similar to the Born-Oppenheimer approximation in quan-
tum molecular dynamics [36], is governed by the stochastic
Landau-Lifshitz-Gilbert (LLG) equation [37–39]

dSi

dt
¼ Si × ðHi þ ζ iÞ − αSi × ðSi ×HiÞ; ð2Þ

where ζ iðtÞ is a Gaussian stochastic field of zero mean, α is
a damping coefficient, and Hi ¼ −∂E=∂Si is the local
exchange force acting on the ith spin. The effective energy
E is given by E ¼ Trðρ̂ ĤÞ, where ρ̂ ¼ expð−Ĥ=kBTÞ is
the instantaneous density matrix of the electron liquid.
Repeated calculation of ρ, which is required at every time
step, based on exact diagonalization (ED), can be over-
whelmingly time consuming [40–46]. On the other hand,
effective classical spin models for the DE Hamiltonian
requires multiple many-spin interaction terms [47–49]. The
determination of these coupling coefficients is numerically
very challenging. Moreover, the error of the empirical
expansion is not well controlled.
To overcome this computational bottleneck, we develop

a NN model for the potential energy surface EðfSigÞ of
spins. We first express the effective energy as a sum of local
contributions

E ¼
X

i

ϵi ¼
X

i

εðCiÞ; ð3Þ

where the energy ϵi ¼ εðCiÞ is associated with the ith lattice
site and is assumed to depend only on spin configuration
Ci ¼ fSjjrij < rcg in its neighborhood. The partitioning of
E into local energies is based on the locality principle
[50,51], which also underlies the ML interatomic potentials
that allow for large-scale molecular dynamics simulations
with the accuracy of density-functional theory [52–59] or
other many-body techniques [60–62].

As shown in Fig. 1, the dependence of energy function
εðCiÞ on the local spin environment is encoded in a feed-
forward neural network. To ensure that symmetries of the
DE Hamiltonian, which are described by the SO(3) spin-
rotation and D4 point groups, are preserved in the energy
function, we have developed a descriptor that translates
local spin configuration Ci into effective coordinates fGlg
that are invariant under both symmetry operations. First, the
SO(3) rotation symmetry can be manifestly maintained by
using only bond variables bjk and scalar chirality χjmn as
building blocks; they are defined as

bjk ¼ Sj · Sk; χjmn ¼ Sj · Sm × Sn: ð4Þ

The collection of these variables around the ith spin
fbjk; χjmng form the basis of a high-dimensional represen-
tation of the D4 group, which is then decomposed into
the fundamental irreducible representations (IRs) [63]. The
basis of each IR fA1

r ; fA2
r ;…; fEr , where r enumerates the

multiplicity, is proper linear combinations of the bond and
scalar chirality variables. Finally, generalized coordinates
fGlg that are invariant under lattice symmetry operations
are obtained from the amplitudes and relative phases of
these IR basis [64]. More details can be found in the
Supplemental Material [65]. These generalized coordinates
are then fed into a NN, which produces the local energy ϵi
at its output. Exchange forces Hi acting on spins are
obtained by applying automatic differentiation to the total
energy; see Fig. 1.
A six-layer NN model is constructed and trained using

PyTorch [65–71]. The training dataset consists of 3500
snapshots of spins and local exchange forces, obtained
from exact LLG calculations of a 30 × 30 lattice; see
Supplemental Material for details about the datasets
[65]. Figure 2(a) shows components of local exchange

FIG. 1. Schematic diagram of neural-network (NN) potential
model for LLG dynamics simulation of DE system. A descriptor
generates the neighborhood spin configuration Ci to effective
coordinates fGlg which are then fed into a NN. The output of
the NN is the local energy ϵi ¼ εðCiÞ associated with site-i.
Automatic differentiation applied to the total energy obtained
from all sites gives the local exchange forces Hi.
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forces Hi predicted by our trained NN model versus the
exact results on test datasets. The difference δ ¼ HML −
Hexact is well described by a Gaussian distribution with a
rather small mean-square error of σ2 ¼ 0.035, as shown in
the inset. Interestingly, the normal distribution of the
deviation δ implies that the statistical error of the ML
model can be interpreted as an effective or artificial
temperature in Langevin dynamics. We next combine the
trained NN model with the LLG dynamics to perform a
quench simulation, in which random spins on a 30 × 30
lattice are quenched to a low temperature T ¼ 0.022, which
is also the temperature used to train the NN. The same
simulations are then repeated using exact diagonalization.
The spin-spin correlation functions obtained from the ML
and ED-LLG simulations are shown in Figs. 2(b) and 2(c)
for two different electron fillings. The nice agreements
between the two methods further confirm the accuracy of
force prediction and demonstrate the transferability of the
NN model in dynamical simulations.
Having successfully benchmarked the NN model,

we used it to perform large-scale quench simulations
on a 100 × 100 system. Figure 3 shows density plots
of local spin correlation obtained by averaging over
four nearest-neighbor bonds of a given site, bi ≡
ðSi · Siþx þ Si · Si−x þ Si · Siþy þ Si · Si−yÞ=4, at different
times after quench. Positive bi corresponds to regions
with predominantly ferromagnetic (FM) alignment of
spins, while negative bi indicates antiferromagnetic
(AFM) domains. Our ML-LLG simulations clearly showed
a relaxation process that leads to an inhomogeneous
state with large AFM domains interspersed with small
FM clusters. We have trained another NN model that
successfully predicts the on-site electron density ni ¼
1
2

P
σhĉ†i;σ ĉi;σi based on the neighborhood spins Ci.

Applying this NN to spin configurations obtained from
the ML-LLG quench simulations, we verified that the
doped holes are indeed confined to puddles with FM spins,
as shown in Figs. 4(a) and 4(b). Interestingly, compared
with the electron density, the spins exhibit more complex
structures. In particular, in addition to FM clusters, a web of
stringlike features can be seen in the AFM background of
the phase-separated states; see, e.g., Fig. 3(d).

FIG. 2. (a) ML predicted exchange forces versus exact solu-
tions from test dataset. The inset shows distribution of the force
difference δ ¼ HML −Hexact between ML prediction and ED,
which is well approximated by a normal distribution, shown as
the red line, with a variance σ2 ¼ 0.035. Right: spin-spin
correlation hSi · Sji as a function of rij ¼ jrj − rij along the
x direction at electron filling fraction (b) n ¼ 0.485 and
(c) n ¼ 0.475. The red dots are results from LLG simulations
with NN models without the Langevin noise, while the blue lines
correspond to ED-LLG simulations at T ¼ 0.022.

FIG. 3. Density plots of local bond variables bðriÞ at four
different times [(a) time ¼ 0, (b) time ¼ 40, (c) time ¼ 60 and (d)
time ¼ 150] of the ML-LLG dynamics simulation on a 100 ×
100 lattice with 1.5% hole doping. The NN model is trained by
datasets from exact solutions on a L ¼ 30 lattice, with parameters
tnn ¼ 1, JH ¼ 7, and electron filling fraction n ¼ 0.485. The
simulation time is measured in units of t−1nn .

FIG. 4. (a) Density plot of on-site electron density ni, predicted
from NN models for the spin configuration shown in Fig. 3(d).
Some magnetic polarons are highlighted by dotted squares. (b) A
close-up look of the FM clusters and the accompanying spins
(projected to a 2D plane). (c) Schematic diagram showing self-
confinement of carriers in a FM cluster.
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Next we turn to the kinetics of FM domain growth.
Figure 5(a) shows the distribution of nearest-neighbor
bond-variable b¼hSi ·Sjinn at different times after
quench. The initially flat distribution function fðbÞ ¼ 1=
ðbmax − bminÞ ¼ 1

2
, corresponding to random spins, starts to

develop a peak at bmin ¼ −1, representing AFM spin
correlation at earlier times (e.g., at t ¼ 10). This then turns
into a bimodal distribution at late times, clearly indicating
the evolution of the system toward phase separation,
although the peak at the FM bond bmax ¼ þ1 is rather
weaker. Since doped holes in the phase-separated states are
mostly confined in FM clusters, the smaller value of
fðbmaxÞ is consistent with the small doping of our system.
We define a FM cluster in such a way that all nearest-

neighbor bonds within it are greater than a threshold
bth ¼ 0.5. The time dependence of the characteristic
length L of such FM clusters is shown in Fig. 5(b).
Qualitatively similar behaviors were obtained using larger
threshold bth. In the initial state with random spins, a
fraction 1

2
ð1 − bthÞ ¼ 1

4
of bonds are above the threshold.

Although this fraction is still below the bond-percolation
threshold pth ¼ 1=2 on square lattice, relatively large FM
clusters can still be found in random spins, which explains
the initially large average size hsi of FM clusters. As the
system relaxes toward equilibrium, the average size quickly
decreases, as shown in the inset of Fig. 5(b). After reaching
a minimum, the FM clusters start to grow again.
Since the number of doped holes is conserved, phenom-

enologically the growth of such conserved fields is
described by the Cahn-Hilliard equation [72], also called
the model-B dynamics [73], and a power-law growth
LðtÞ ∼ t1=3 is expected. Moreover, since the density of
doped holes is very small in the mixed-phase states, the
phase separation dynamics in such asymmetric quenches is

supposed to be well described by the original LSW theory
[23,24], which convincingly predicts the same t1=3 growth.
However, as shown in Fig. 5(b), only a short initial
period of the domain growth can be described by the α ¼
1=3 power law. At late times, the length scale L increases
with a significantly slower rate than that predicted by the
LSW theory.
The LSW theory describes the diffusive interactions

between domains of conserved minority phase. Clusters of
the minority phase compete for growth through an evapo-
ration-condensation mechanism, whereby larger clusters
grow at the expense of smaller ones. According to this
scenario, the growth of the hole-rich FM cluster requires the
migration of doped holes from smaller clusters to larger
ones in the mixed-phase state. The initial aggregation of the
charge carriers into proto-FM domains can probably be
described by the LSW mechanism, as evidenced by the
early stage power-law growth in our simulations. However,
the phase separation process is dramatically slowed down
when the AFM correlation is established in the background
of the half filled majority phase. At this point, the doped
holes induce a cloud of surrounding parallel spins through
the double-exchange mechanism, which in turn provide a
confining potential. Figure 4(b) shows examples of hole-
rich FM clusters embedded in an AFM background, and the
self-confinement of holes in such domains is schematically
shown in Fig. 4(c). Importantly, as a result of such self-
trapping, evaporation of doped holes from FM clusters is
strongly suppressed, leading to the breakdown of the LSW
mechanism.
Moreover, even if some charge carriers manage to escape

confinement of the emerging FM clusters described above,
they are soon transformed to relatively immobile quasi-
particles called magnetic polarons [30,74–79], some of
which are highlighted in Fig. 4(b). Magnetic polaron of the
single-band DE model consists of as few as five parallel
spins that trap exactly one fundamental electric charge [79].
In fact, magnetic polarons to some extent can be viewed
simply as the smallest FM cluster [12].
Another mechanism for L ∼ t1=3 domain growth, pro-

posed by Binder and Stauffer (BS) [80,81], is based on the
Brownian motion and collision of the minority-phase
droplets. For the single-band DE Hamiltonian studied in
this Letter, the FM clusters, including magnetic polarons,
are pretty much immobile up to temperatures close to the
magnetic phase transition [77–79]. This indicates the BS
scenario cannot produce a sustained domain growth in
our case. On the other hand, taking into account the
quantum nature of localized spins, it has been argued that
diffusive motion of small magnetic polarons can be
achieved through quantum tunneling [82–84] or large
paramagnetic fluctuations [85,86]. For most CMR materi-
als, however, such quantum tunneling is suppressed due
to the large magnitude of local spins. At any rate, even
with diffusive magnetic polarons, a consistent treatment of

FIG. 5. (a) Distribution function of the nearest-neighbor bond-
variables at different dimes during phase separation. (b) Average
linear size L ¼ hsi1=2 of FM clusters versus time after a thermal
quench. The dash-dot line shows the t1=3 power-law growth,
while the dashed line indicates sublogarithmic dependence
LðtÞ ∼ ðlog tÞβ with β ¼ 0.11. The inset shows the time depend-
ence of average size hsi of FM clusters.
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tunneling-induced evaporation of holes is required in order
to see whether the LSW scaling might be restored.
In CMR materials and magnetic semiconductors, the

formation of FM clusters and magnetic polarons are
accompanied by local lattice distortion and orbital ordering
[12], both of which are expected to further stabilize the
composite structure, thus reducing the mobility of charge
carriers. Consequently, a similar freezing effect is likely to
take place in the phase separation process of real materials.
The presence of quenched disorder most likely enhances
the glassy behaviors discussed above. For example, it has
been shown that charge carriers can be trapped by impu-
rities, forming bound magnetic polarons [87–89]. Other
factors that affect the carrier mobility include hole con-
centration and external electric and magnetic fields. In
particular, higher doping percentage could increase the
overlap of the carrier wave function, thus enhancing the
tunneling mobility.
The functionality of correlated electron materials, such

as CMR manganites, depends intimately on the structure of
the mixed-phase states, which, in turn, are determined by
the phase separation process. Some reported anomalous or
glassy dynamics in CMR manganites [90–92] might be
related to the freezing behavior studied in this Letter.
ML-enabled large-scale simulations offer the capability
to systematically investigate and characterize phase sepa-
ration dynamics, paving the way toward engineering
electronic mixed-phase states with desired properties.
With powerful ML methods, generalizations to more
realistic models, which include, e.g., multiorbital or the
Jahn-Teller effect, are now feasible. For example, the
inclusion of a local Jahn-Teller distortion means that
simultaneous quantum MD and LLG simulation is
required for the dynamics of Jahn-Teller phonons and
local spins, and a generalized NN model has to be
developed that can predict forces for both degrees of
freedom. Additional care has to be taken in the presence of
crystallographic defects such as dislocations. The reduced
or even absence of point group symmetry requires extra
effort for the combined displacement–magnetic descriptors.
The magnetic descriptor developed in this Letter, properly
combined with descriptors developed for ML interatomic
potential models [93,94], also has potential applications
beyond lattice-based models, for example, LLG simula-
tions of spin glasses and MD simulations with magnetic
degrees of freedom.
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