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We report the observation of gravity-capillary waves on a torus of fluid. By means of an original
technique, a stable torus is achieved by depositing water on a superhydrophobic groove with a shallow
wedge-shaped channel running along its perimeter. Using a spatiotemporal optical measurement, we report
the full dispersion relation of azimuthal waves propagating along the inner and outer torus borders,
highlighting several branches modeled as varicose, sinuous, and sloshing modes. Standing azimuthal
waves are also studied leading to polygonlike patterns arising on the two torus borders with a number of
sides different when a tunable decoupling of the two interfaces occurs. The quantized nature of the
dispersion relation is also evidenced.
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Introduction.—Vortex rings or toroidal droplets are
ubiquitous in nature [1–9], but they are unstable. On flat
surfaces, they break up into droplets or close their central
hole [10–15]. Generating stable tori of fluid thus remains a
formidable challenge. It can nevertheless be achieved in
toroidal plasma [16,17], in biophysics [18], or in fluid
mechanics by using an unwetting liquid at the periphery of
a cylinder [19], by injecting a liquid within a rotating fluid
[11,20], or by levitating a liquid over its vapor film
(Leidenfrost effect) on particular substrates [21,22].
Because of its periodic boundary condition, a stable torus

of fluid is a good experimental system to study the wave
propagation in curved and periodic media. For hydro-
dynamic waves, the curved conditions have been achieved
experimentally only for spherical-liquid shells [23–25],
whereas periodic conditions in planar geometry can be
reached (e.g., in an annular water tank [26,27]), as well as
in curved geometry but without periodicity (e.g., along the
border of a liquid cylinder [28,29]). In this last case, the
wave dispersion relation found experimentally [28,29] and
theoretically [30–32] differs from that in planar geometry
[33]. For a fluid torus, the dispersion relation of waves
along the inner and outer torus borders, as well as their
interaction, are still unreported to our knowledge, the only
existing experiment [19] and the theoretical predictions
[19,22] being performed with strong torus constraints.
Here, we report an original experimental technique to

create a stable torus of liquid moving almost completely
unconstrained. By means of a simultaneous space and time
resolved measurement, we highlight the dispersion relation
of azimuthal waves propagating along the torus borders, as
well as their interaction. Several branches occur with a
complex structure reminiscent of forbidden gaps in periodic
media in condensed-matter physics [34,35]. Standing
waves are also studied showing polygonlike patterns.

Our system with these particular boundary conditions
(periodic, curved, and one-dimensional) including different
propagation modes could evidence nonlinear waves,
solitons, or wave turbulence [36,37] in this geometry.
Experimental setup.—A circular duralumin substrate

(19 cm in diameter) is machined to have an axisymmetric
wedge-shaped groove, with angle α ¼ 4.5° to the horizon-
tal, running along its perimeter as shown in Fig. 1. The

FIG. 1. Top: cutout of the experimental setup showing the water
torus on the groove. Bottom: profile of the setup including the
Teflon plug connected to a shaker and camera centered above the
circular plate.
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substrate is coated with a superhydrophobic spray provid-
ing a liquid-substrate contact angle of 160°–170° [38,39].
The gentle substrate inclination of angle α constrains the
liquid (distilled water) to move along the sloped surface,
thus preventing the torus from closing its hole. Because of
this angle, the liquid experiences a reduced gravitational
acceleration geff ¼ g sin α with g ¼ 9.81 ms−2.
After being deposited on the substrate, we excite the

borders of the torus using a Teflon cylinder connected to a
shaker oscillating vertically as shown in Fig. 1. For a given
fluid volume, a frequency-sweep forcing is applied; i.e., its
frequency f is varied linearly in time over 2 min from 0 to
20 Hz. The typical amplitude of vibrations is 3 mm. A
camera located above the torus records its interface dis-
placements. Using a border detection algorithm written
using OPENCV [40], we extract from the video the
horizontal displacements ηðθ; tÞ of the two borders with
respect to their stationary positions. The procedure is
repeated by adding water to change the width W of the
torus in the range 1.2–3.2 cm, the center of the section
remaining at the groove radius Rc ¼ 7 cm. These values
correspond to torus aspect ratios ξ ¼ ð2Rc=WÞ from 4.3 to
11.7. For each volume, we perform a 2D fast Fourier
transform on the inner- and outer-border signals, moving
from real space ηðθ; tÞ to Fourier space η̃ðkθ;ωÞ. This leads
to the dispersion relation ωðkθÞ of the azimuthal waves, ω
being their angular frequency and kθ their azimuthal wave
number, that takes integer values n.
Dispersion relation.—As the torus is excited, linear

waves propagate along its borders (see video in the
Supplemental Material [41]). We observe that the injected
energy is redistributed in different regions of the Fourier
space, localized around several branches [see Fig. 2(a)
for the inner and Fig. 2(b) for the outer border]. The
dimensionless wave number kθ is used to compare the wave
spectra along both borders. It takes discrete values because

the system is periodic. We will set Ri ¼ Rc −W=2 and
Ro ¼ Rc þW=2 (see Fig. 1).
The different branches observed in Fig. 2 correspond to

different modes of wave propagation. The branch passing
through zero, denoted V and visible in both spectra, is the
dispersive branch stemming from the usual gravity-capil-
lary waves (see below). The first branch starting above
zero, marked S, has a cutoff frequency ωS

0 ≡ ωSðkθ ¼ 0Þ,
which depends on the torus volume (see below). Other
branches (denoted Σi with i ¼ 1, 2, 3, or 4) correspond to
sloshing modes clearly different from the V and S branches.
In Fig. 3, we superimpose the two spectra of Fig. 2 to better
understand their structures. All these modes are described
below in detail.
V mode.—The V branch is well described by a

dispersion relation of gravity-capillary waves (see solid
line in Fig. 3) of the form

ω2
V ¼

�
geff

kθ
Ro

þ σeff
ρ

k3θ
R3
o

�
tanh

�
kθWRo

2R2
c

�
; ð1Þ

with ρ ¼ 1000 kg=m3 the fluid density, geff ¼ g sin α≃
0.77 ms−2, and σeff ¼ 60 mNm−1, an effective surface
tension inferred by fitting the data (regardless of
W ∈ ½1.6; 3.2� cm); geff and σeff are notably linked to the
geometry of the substrate [32]. For kθ → 0, Eq. (1) reads
ωV ¼ Ωφkθ. The angular phase velocity of gravity waves
Ωφ is inferred by fitting the V branch in Figs. 2 or 3
near kθ ¼ 0.
By changing the torus volume, we infer Ωφ ≡

½ωVðkθÞ=kθ�jkθ¼0 as a function of the width W, on the
inner and outer borders separately, as shown in the top inset
of Fig. 4. Ωφ is experimentally found to match for both
borders at a given volume and to scale as W1=2. It is well
described (see solid line in top inset of Fig. 4) by

(a) (b)

FIG. 2. Dispersion relation η̃ðkθ;ωÞ of azimuthal waves along the (a) inner and (b) outer borders of a torus of width W ¼ 3.2 cm,
obtained using sweep-sine forcing. The energy is distributed along distinct branches corresponding to different propagation modes. The
S branch along the inner border (a) is more pronounced than the V branch, in contrast with the outer border (b). The sloshing Σi branches
are the same for both borders.
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Ωφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
geffW=2

p
Rc

; ð2Þ

with no fitting parameter, in agreement with Eq. (1)
when kθ → 0.
S mode.—The S branch has a very different behavior,

intersecting the upper sloshing branches (see Fig. 3). The S
branch is found to display a pure capillary regime (i.e.,
ω2 ∼ k3θ) for kθ ≫ 0 and to be well described (see dashed
line in Fig. 3) by

ω2
S ¼ ðωS

0Þ2 þ
σeff
ρ

�
kθ
Ri

�
3

; ð3Þ

with no fitting parameter, ωS
0 being the cutoff frequency.

The Smode being more significant for the inner border (see
Fig. 2), it is thus consistent that Eq. (3) involves the inner
radius Ri as a length scale. Moreover, ωS

0 is experimentally
found to be dependent on the torus width as W−1=2 (see
main Fig. 4 and bottom inset). Since this cutoff corresponds
to the motion of the center of mass of the torus section, we
model it as (see Supplemental Material [41])

ωS
0 ¼

π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g sinð2αÞ

2W

r
: ð4Þ

Equation (4) is found in good agreement with the data with
no fitting parameter (see dashed line in main Fig. 4 and
bottom inset).
Sloshing modes.—The Σi branches in Fig. 3 are ascribed

to sloshing modes driven by gravity. These branches are
well described (see dot-dashed lines in Fig. 3) by

ω2
Σi
¼ ðωðiÞ

0 Þ2 þ c2
�
kθ
Rc

�
2

; ð5Þ

with c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
geffRc

p
, and ωðiÞ

0 as the cutoff frequencies at
kθ ¼ 0. These nondispersive sloshing modes (ω2 ∼ k2θ) for
kθ ≫ 0 differ from theoretical results on sloshing in
toroidal containers [42] or in nonrectangular ones [43].

Moreover, the cutoffs are found to scale as ωðiÞ
0 ∼W−1 (see

bottom inset of Fig. 4) and are well described (see solid

lines) by ωðiÞ
0 ¼ MðiÞ ffiffiffiffiffiffiffiffiffiffiffiffi

geffRc
p

=W with MðiÞ a function
computed numerically (see Supplemental Material [41]).
Thin torus.—For slim tori, the inner- and outer-border

motions interact. The S and V branches are then visible
both on the inner- and outer-border spectra (see
Supplemental Material [41]). The V branch corresponds
to a varicose mode, i.e., waves propagating along both
borders in antiphase motion (see inset of Fig. 4). The S
branch is related to a sinuous mode (also called zigzag
mode [44,45]) for which waves on both borders are in
phase (see inset of Fig. 4). Indeed, by summing (respec-
tively, subtracting) signals of the outer and inner borders
and taking the spectrum of the resulting signal, the sinuous
(respectively, varicose) branch in the total spectrum is
removed, as expected for in phase (respectively, antiphase)

FIG. 3. Superimposition of the two spectra of Fig. 2, as well as
the predicted branches. V branch corresponds to Eq. (1) (solid
line), S branch to Eqs. (3) and (4) (dashed line), and (Σi) branches
to Eq. (5) (dot-dashed lines). W ¼ 3.2 cm.

FIG. 4. Cutoff frequency ωS
0 of the sinuous S branch versus the

torus width W. Solid line displays Eq. (4) with no fitting
parameter. Bottom inset: log-log plot of the cutoff frequencies

versusW for sinuous and sloshing branches: ωðiÞ
0 ∝ W−1=2 for the

S branch, and ωðiÞ
0 ∝ W−1 for all Σi sloshing branches. Top inset:

angular phase velocity Ω of the outer (blue) and inner (orange)
borders for different W (inferred from the V branch). The solid
line corresponds to Eq. (2). Insets: sinuous and varicose mode
schemes for a slim torus.
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motions. For wide tori, interaction between the two borders
vanishes for almost all kθ, and these modes are no longer
phase related. The wide torus criterion isW > 2R2

c=ðkθRoÞ,
from Eq. (1).
Polygons.—We now force the torus at a fixed frequency

f to generate standing azimuthal waves along both borders
of the torus. The torus boundary condition being periodic,
the wave dispersion relation is quantized (kθ is an integer).
This quantization is studied more closely here, as well as
the coupling between the outer and inner torus borders.
We consider two different torus volumes, a slim one

(W ¼ 1.5 cm) and a wider one (W ¼ 3 cm). For each f, a
short video of the torus is taken (see Supplemental Material
[41]). Once the standing wave regime is established, a
polygonal pattern is observed [see Fig. 5(a)]. We then
measure the number n of sides of the pattern. By varying
f ∈ ½0.8; 3� Hz, we plot n as a function of f. In the slim
case, n is found to be the same for both the inner and outer
borders within this frequency range [see inset of Fig. 5(b)].
The maximal number of sides that is possible to observe
can be predicted. It occurs when the wavelength is
of the order of the effective capillary length, i.e.,
λ ¼ lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σeff=ðρgeffÞ

p
≈ 8 mm. For Ro ¼ 8.5 cm, the

maximal number is given by nm ¼ 2πRo=lc ¼ 67. Note
that such azimuthal patterns were previously observed up to
n ¼ 25, but only along the outer border of a torus [19].
The measurements are repeated for a wider torus where

the interaction between both borders is weak. Figure 5(b)
shows the superimposition of the outer- and inner-border
wave spectra together with the number of sides n for a
given forcing frequency f. For both borders, they are the
same and follow the V branch, up to a given frequency
(f ≤ 1.2 Hz). Once f is large enough, n becomes different
on the two borders: the number n for the outer border (□
symbol) keeps on following the V branch, while for the
inner border (þ symbol), n switches to the upper S branch.
This effect is due to a decoupling between the two
interfaces. For the slim torus, energy on the inner and
outer borders is distributed on both S and V branches (see
Supplemental Material [41]), and n matches only the V
branch as a varicose mode [see inset of Fig. 5(b)]. For the
wide torus, the inner border localizes its energy much more
on the S branch [see Fig. 2(a)], whereas the energy on the
outer border is mainly distributed on the V branch [see
Fig. 2(b)]. Except for large scales, i.e., kθ ≤ 2R2

c=ðWRiÞ or
kθ ≤ 6 for W ¼ 3 cm, the two borders are decoupled [see
main Fig. 5(b)].
Conclusion.—We developed an original technique to

create a stable torus of fluid moving almost completely
unconstrained and offering a system with atypical boun-
dary conditions, i.e., periodic, curved, and one-
dimensional. We reported direct measurements of the
dispersion relation of azimuthal waves propagating along
the boundaries of this stable torus of fluid. The dispersion
relation is quantized since the periodicity induces a wave

number selection for a given forcing frequency band. The
wave energy distribution in Fourier space is complex and
exhibits several modes modeled as varicose, sinuous, or
sloshing ones. In the future, this new system could high-
light nonlinear phenomena, such as nonlinear waves and
solitons in curved geometry. It could also address the role
of finite-system-size effects in wave turbulence [36,37,46],
as well as the coupling of waves propagating on two curved
interfaces [45,47].

We thank A. Di Palma and Y. Le Goas for their technical
help on the experimental setup. Part of this work was

(a)

(b)

FIG. 5. (a) Polygonal patterns generated as standing waves
along the inner border n ¼ 8 (octagon) and the outer border n ¼
12 (dodecagon). Forcing frequency f ¼ 2.5 Hz.W ¼ 3 cm. Torus
is colored in magenta. (b) Number of sides n of the polygonal
pattern on the outer (□) and inner (þ) border of a wide torus
(W ¼ 3 cm) for different f, together with the superimposed
dispersion relations. For f ≥ 1.2 Hz, the two borders decouple
and n differs on the two borders: the outer n keeps following the V
branch, while the inner n switches to the S branch. Inset: same
for a slim torus (W ¼ 1.5 cm): n on both borders matches for all f.
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