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We discuss certain structural analogies between supersymmetric quiver gauge theories and lattice

models leading to fracton phases of matter. In particular, classes of quiver models can be viewed as lattice

models having subsystem symmetries, dimensions of moduli spaces growing linearly with the size of the
lattice, and having excitations with limited mobility (with “excitations” and “mobility” properly defined).
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Introduction.—Lattice models are a very useful effective
description of various phases of condensed matter physics.
There are two ways to understand such lattice models. First,
these are quantum mechanical systems with degrees of
freedom labeled by lattice points, edges, and faces. As such
this is an example of a 0 4+ 1 quantum field theory (QFT).
Second, one literally thinks about the lattice as a spatial
arrangement of degrees of freedom, say of atoms. As such
the lattice models describe excitation propagating in real
space and this is the perspective from which the lattice
models are usually studied. (Supersymmetric) quiver gauge
theories have a very similar structure. These are QFTs in
(D —1) + 1 dimensions with fields labeled by vertices or
edges of a lattice. The vertices are associated typically with
gauge interactions and the edges to matter fields. One can
have also interactions associated with faces of the lattice.
On the other hand, one can try to view the lattice of the
quiver theory as a discretization of spatial dimensions. In
other words, we can view the quiver theory as a stack,
dimension of which is the dimension of the lattice, of
D-dimensional coupled layers. This approach was
pioneered in [1].

In recent years there has been a lot of interest in the
condensed matter literature in a new type of lattices which
give rise to the so called fractonic phases of matter [2—4].
These systems have quite interesting properties. These
include, among others, subsystem symmetries, excitations
of restricted mobility, and a large number of vacua (log of
which scales linearly with the size of the lattice). Moreover,
these systems pose a challenge to the usual Wilsonian
paradigm of going from a lattice theory in the UV to a
continuum QFT in the IR [5].
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In this Letter we will want to revisit the interpretation of
quiver gauge theories as a lattice model and draw some
analogies to the lattice theories of fractons. In particular we
will consider quiver theories corresponding to a two-
dimensional periodic (toroidal) lattice. We will show that
when these models are viewed as residing on a spatial
lattice they have properties which are characteristic of the
fractonic theories. Namely, these models have subsystem
symmetries, excitations of restricted mobility, and mani-
folds of vacua (dimension of which scales linearly with the
size of the lattice). We will discuss a very particular
supersymmetric quiver theory with D = 4.

A quiver theory-lattice.—Let us define an example of a
quiver theory. We consider an N =1 supersymmetric
gauge theory in D = 4. The gauge group is SU(N)Lr<L2,
The matter content consists of a collection of chiral
superfields transforming in a fundamental representation
of one of the L; x L, SU(N) gauge factors and in
antifundamental of another. The matter content can be
effectively encoded in a quiver diagram of Fig. 1. The
lattice has L; nodes along the vertical axis and L, nodes
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FIG. 1. An example of a quiver theory. Each node is an SU(N)
gauge group. The lines are chiral superfields in the fundamental
representation of the symmetry of the node they point to and
antifundamental representation of the node they emanate from.
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along the horizontal axis, and it is periodic. The quiver
theory has chiral superfields 2[1,, %I,, and © p» associated
with the three types of edges: the vertical, and the two
diagonals. We can label the fields by one of the two
triangular plaquettes, p, they reside on. The interactions
include ' =1 SU(N) gauge dynamics at each vertex
involving the fields ending on that vertex. The fields are in
the fundamental representation if the edge goes into the
vertex and antifundamental if it exits it. Moreover, there is a
superpotential interaction associated with each triangular
plaquette,

W="> 2,Tr%,B,6,, (1)
P

where p labels the plaquette (4, are couplings). This quiver
theory is conformal meaning that one can continuously turn
on certain combinations of the couplings starting from the
free theory without breaking conformality and triggering an
RG flow, see, e.g., [6,7]. Such quiver theories appear in
numerous contexts and have been extensively studied
following [8]. The quiver theories are very much reminis-
cent of layered CS models studied, e.g., in [9]. In fact the
D = 4 quiver theory can be thought of as an IR effective
description of a UV D =6 (1,0) superconformal field
theory (SCFT) compactified on a torus with minimal
punctures [7]. The D = 6 SCFT is either the one residing
on N MS5-branes probing Z; singularity and we have L,
punctures, or Z;, singularity and we have L; punctures.
Taking all couplings to be small one can think of the
punctures in either description as ordered along one of the
cycles of the torus giving a notion of locality on the lattice.
This is very reminiscent of lattice spin models being an
effective description of an underlying UV continuum
theory. Note that for general L; and N > 3 there are no
supersymmetric marginal or relevant deformations beyond
gauge interactions and (1), while for N = 3 we can add
marginal baryonic superpotentials to be discussed later, and
for N = 2 we can have relevant mass terms for the fields.

Subsystem symmetry.—Let us discuss the global sym-
metry of the quiver theory. First, as the theory is conformal
in the UV it has an R symmetry which assigns free charges
(2/3) to all the chiral superfields. Moreover, the model
possesses additional global symmetries. The dimension of
the symmetry group depends on the size of the lattice. We
have L, U(l) symmetries which we label by a;
(i=1,...,L,) associated with the columns of the lattice,
see Fig. 2. Under these symmetries the B fields inside the
relevant column have charge +1 and the € fields inside the
relevant column have charge —1. While all « fields and
fields outside the column have vanishing charge. This
symmetry is thus a subsystem symmetry of the lattice (This
is very reminiscent of the XY plaquette model [10].). The
model has L; U(1) symmetries which we label by p;
(i =1, ..., L) associated with the diagonals winding to the
left and down of the lattice, see Fig. 2. The insistence on
having these symmetries determines the gluing of the
lattice into a torus. In addition to these we also have

FIG. 2. Subsystem symmetries.

GCD(L,,L,) symmetries which we label by y;
[i=1,...,GCD(L,,L,)] associated with the diagonals
winding to the left and up of the lattice. The 2 fields
have charge (—1,—1) under the (f,y) symmetries diago-
nals of which cross it. The fields 2B have charge +1 under
the # symmetry which crosses it and are not charged under
the y symmetries. Finally, the fields € have charge +1
under the y symmetry which crosses it and are not charged
under the f symmetries. These symmetries (excluding an
overall diagonal combination which is redundant) are
nonanomalous and consistent with the superpotential (1).
The a, f, and y symmetries (excluding the diagonal
combination of each) are thus also subsystem symmetries.
To summarize the continuous symmetry group of the
theory can be written as

U(1)i2 x U(1)5> x U(1)g Pt

It is useful to define three symmetries U(1), x U(1); x
U(1), such that each is a diagonal combination of the
symmetries with the i indices. The U(1) projection is such
that the diagonal combination of these is factored out. One
can study more general, twisted, boundary conditions
leading to smaller symmetry groups [11].

Excitations.—Let us consider local gauge invariant
excitation on the lattice. By local we mean operators which
are constructed from fields of a single edge on the lattice. A
nice set of such operators is given in terms of the chiral (di)
baryons built from the edges of the lattice,

G =U(l)g x

N
Ajj = €M MNey by H (2[1/)2;
=1
N
B = by...by B.. )%
ij €a1...aN€ ( lj)bf’
=1
N
Cij = €a1..‘aN€b]mbN H (GIJ)Z; (3)
=1

Here, we contract the gauge indices and label the fields
and the baryons by the symmetries they are charged under.
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FIG. 3. Moving baryonic excitations in pairs.

For example, the baryon A;; is charged under f3; symmetry
and y; symmetry. We view these baryons as excitations
propagating in the D-dimensional continuous space-time as
well as on the two-dimensional lattice. Let us assume first that
GCD(L,, L,) = L, and consider the two-point functions,

<Bij(xl)(Bkl(x2>)T> & 5ik5jl- (4)

The statement on the right-hand side follows simply from
symmetry arguments as the baryons at different locations of
the lattice are charged under different subsystem symmetries.
We interpret this fact as the baryonic excitations being
immobile on the lattice (though they are free to move in
the D-dimensional continuous space). Similar statements can
be made about A and C baryons.

On the other hand, taking pairs of baryons we have (here,
the first index is the « one.),

(B (1) Cit (22) B (x3)]T[Cr (x4)]T) % 8y i

as in case the condition on the right-hand side is satisfied
the charge under all the symmetries of the correlator is zero.
We thus can interpret this result as pairs of baryon
excitations movable (in principle) along certain directions
of the quiver lattice, see Fig. 3. One can make analogous
statements involving pairs of B and A or C and A baryons.
Finally, if we have a triplet of baryons A, B, and C residing
on the edges of the same plaquette, these can be moved
along any direction in a correlated way.

Let us assume now that GCD(L,,L,) = 1. Then the
model has only U(1)5 x U(l);‘ x U(1),/U(1) symmetry.
The baryonic operators C;; can now (in principle) mix with
Ciy, that is with same value of the column index and
different values of the diagonal one. In other words the C
baryons are movable along the vertical line. A similar
statement holds for the A baryons while the B baryons are
still charged under two subsystem symmetries and thus are
immobile on the lattice. However, as the symmetry is only
broken by boundary conditions the mixing between the A
and C baryons at different positions can be only due to a

high loop effect order of which scales with the size of the
system (L;). Thus assuming L; are large and the couplings
are small (which always can be achieved as the theory is
conformal and connected continuously to a free one) the
mixing between different sites is strongly suppressed.
The excitations are thus effectively immobile even when
the symmetries are not there. The breaking of symmetry is a
global effect on the lattice.

Once the couplings are tuned not to be small this
argument fails and the baryons acquire mobility.
However, tuning the couplings to be finite the notion of
locality on the lattice is lost. For example, the quiver theory
we are discussing enjoys an S duality: a weakly coupled
quiver theory is dual to a strongly coupled one with any two
of the columns permuted [7]. Thus in order to have a local
interpretation of the lattice we will keep the couplings
small.

Vacua.—The quiver theory has a rich structure of moduli
spaces of vacua. First, we have the baryonic branch on
which we give vacuum expectation values (VEVs) to the
baryonic operators. The dimension of this branch scales as
~L; X L,, i.e., with the number of sites. All the subsystem
symmetries are broken on a generic locus of this branch.
One can say that on this branch the excitations with
restricted mobility condense. We will comment on this
branch soon but here as we want the baryons to be
dynamical excitations we will consider branches on which
these do not acquire VEVs.

We can define three additional natural branches which
are parametrized by VEVs of operators winding the quiver,
see Fig. 4. First, we have the operators winding vertically
along the a cycles,

14
A0 =m(TLw, ) e=ren-1 )

where p; are the plaquettes charged under symmetry «;.
Note that for the SU(N) gauge groups we can have
independent operators winding up to N —1 times. We
have (N — 1)L, such operators all of which break the same
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FIG. 4. The winding operators which can receive a vacuum
expectation value and parametrize the moduli spaces of vacua.

141603-3



PHYSICAL REVIEW LETTERS 127, 141603 (2021)

subgroup of the continuous global symmetries. However,
these have vanishing charges under the subsystem sym-
metries. We have analogously (N — 1)L, operators wind-
ing the f cycle and (N —1) GCD(L,,L,) operators
winding the y cycle. The operators in each one of these
branches again have the same charges. The dimension of
these branches scales linearly with the size of the lattice. On
any of these branches the gauge groups are broken to an
Abelian subgroup, the baryons built from the fields getting
VEVs become free fields and decouple, and all the other
fields acquire mass depending on the VEV. Thus the theory
becomes free in the IR. These branches can be referred to as
generalized Coulomb branch, see, e.g., [12]. In the case of
L, =1 the theory has effectively A/ = 2 supersymmetry
with the 2 bifundamentals becoming adjoint (plus a
decoupled singlet) chiral superfields, and the operators
winding around the a cycle parametrize the familiar N = 2
Coulomb branch.

A comment on N = 3.—Taking N =3 the baryonic
operators become marginal. In particular deforming the
Lagrangian by

AW, :A;,(AP+BP+C1,), (6)

is an exactly marginal deformation (1), is the coupling).
This is a as the baryons in AW, are charged under three
U(1)s with opposite signs [13]. This deformation identifies
the @, f, and y symmetries under which the plaquette p is
charged. The deformation also lifts part of the baryonic
branch of vacua. One can view the plaquettes with the
interaction above as impurities which add directions along
which combinations of excitations can move. Adding
densely on the lattice the deformation (6) the excitations
will acquire mobility in various directions.

The continuum limit.—It is interesting to ask whether we
can take a limit such that the two dimensions of the lattice
become continuous. To do so we might want to introduce a
dimensionful parameter and take L; to infinity. In fact this
limit was considered long ago in the framework of [1] in
[6]. See [14] for more recent discussions. There the theory
is considered on the baryonic branch with all the subsystem
symmetries broken. Performing appropriate scaling of
parameters it was argued that the theory is effectively
described by the (1,1) little string theory with both L; large
[and the (2,0) SCFT when L, is large but L; = 1] in 6D
[15]. On the generalized Coulomb branches the subsystem
symmetries are preserved and thus one would expect to find
unconventional theories of the type discussed in [5,16].

Summary and comments.—We have drawn a simple
analogy between lattice systems leading to fractons and
supersymmetric quiver theories. In particular, the quiver
theories can be naturally associated with a lattice with
subsystem symmetries. Operators defined locally on this
lattice, such as the baryons, can be thought of as excitations
charged under the subsystem symmetry. The problem of

studying correlation functions of these operators is analo-
gous to studying the dynamics of the excitations. As the
operators are charged under the subsystem symmetries this
leads to the excitations generally having restricted mobility
on the lattice. The theory has a large number of vacua,
dimension of natural subspaces of which, the generalize
Coulomb branch, scale linearly with the size of the lattice.
Understanding the continuum limit preserving the subsys-
tem symmetry is related to the question of understanding
the dynamics on the generalized Coulomb branch of the
quiver theories.

Let us make several comments. First, one can wonder
what role did supersymmetry play in our discussion.
Supersymmetry is important in establishing that the quiver
discussed here has moduli spaces of vacua not lifted by
quantum effects, as well as the model having exactly
marginal deformations giving us an argument in favor of
locality on the lattice.

We can consider giving up conformality in the UV. For
example, starting from the quiver we have discussed one
can construct a huge variety of quiver gauge theories tiling
the torus by giving VEVs to some (but not all) of the
baryons (see, e.g., [17]). In particular we can preserve say
all the # and y subsystem symmetries doing so. (These
systems and their symmetries were studied, e.g., in [18] and
they have a simple 6D interpretation [19].) Such theories
will not be conformal in the UV but rather flow to a
strongly coupled SCFT in the IR. One way to view the
generalized Coulomb branches of these models is to start
from the quiver of this Letter and explore the mixed
baryonic and generalized Coulomb branches. In principle
most of what we have discussed applies also to these
SCFTs. One interesting question however is whether these
theories have limits of their conformal manifold such that
the lattice of the quiver is effectively local. Similarly, one
can construct quiver theories with D < 4 and with more
general gauge groups and matter fields, again with the
locality on the lattice being an interesting question to be
addressed. For example, quiver theories with D = 2 were
discussed in [20,21]. As gauge interactions are relevant in
lower dimensions we have more options of constructing
UV complete quiver theories.

One of the interesting features of the fractonic systems is
the UV/IR mixing: namely the fine details of the lattice,
such as the number of sites, effecting the long distance
physics. In the quiver example this is manifest through the
dimension of some of the branches of moduli spaces of
vacua (as well as the dimension of the conformal manifold
and the number of symmetries) depending on
GCD(L,,L,). Moreover, the study of quiver theories
makes a direct connection to other setups were such
UV/IR mixing phenomena are known, such as the little
string theory we mentioned above [22]. Engineering the
quiver theories in string/M theory (e.g., studying 6D
SCFTs coming from M>5-branes probing orbifolds
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compactified on 2D surfaces with flux in the limit of large
flux and large order of the orbifolds [19,23]) might give
interesting geometric insights into the continuum limit of the
“fractonic” (generalized Coulomb) phases of quiver models.
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