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We study an N ¼ 1 supersymmetric quantum field theory with OðMÞ ×OðNÞ symmetry. Working in
3 − ϵ dimensions, we calculate the beta functions up to second loop order and analyze in detail the
renormalization group (RG) flow and its fixed points. We allow N and M to assume general real values,
which results in them functioning as bifurcation parameters. In studying the behavior of the model in the
space of M and N, we demarcate the region where the RG flow is nonmonotonic and determine curves
along which Hopf bifurcations take place. At a number of points in the space of M and N we find that the
model exhibits an interesting phenomenon: at these points the RG flow possesses a fixed point located at
real values of the coupling constants gi but with a stability matrix ð∂βi=∂gjÞ that is not diagonalizable and
has a Jordan block of size two with zero eigenvalue. Such points correspond to logarithmic conformal field
theories and represent Bogdanov-Takens bifurcations, a type of bifurcation known to give rise to a nearby
homoclinic orbit—an RG flow that originates and terminates at the same fixed point. In the present
example, we are able to employ analytic and numeric evidence to display the existence of the homoclinic
RG flow.
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Introduction.—Since the classic review by Kogut and
Wilson [1] on the ϵ expansion and renormalization group
(RG) flow, the general properties of RG flows have been
the subject of active research. In the cases usually consid-
ered, once a theory starts flowing, it ends up at a fixed point
where it is described by some conformal field theory
(CFT). From a general point of view, the equations
describing instances of RG flow form systems of autono-
mous differential equations, and the properties of such
systems and flows they admit are well understood [2–5]. In
particular, dynamical systems can exhibit flows more
peculiar than that between distinct fixed points, and
Kogut and Wilson speculated on the possibility of limit
cycles, ergodic, and turbulent behavior in RG flow. Since
then a number of monotonicity theorems have been
proven that severely restrict the RG flow of unitary
quantum field theories (QFTs). The first such theorem
was Zamolodchikov’s c theorem [6], which establishes a
function that interpolates between central charges at 2d
CFTs and decreases monotonically along RG flow.
Analogous theorems were proven in four dimensions (a
theorem) [7,8] and three dimensions (F theorem) [9–11].

The monotonicity implied by these theorems excludes the
possibility of limit cycles, except for a loophole pointed out
in [12,13]: multivalued c functions. This loophole was used
in deformed Wess-Zumino-Witten models [14–16],
although the coupling constants pass between infinity
and minus infinity in order to realize cyclic RG flow.
There are also examples of cyclics RG flow in quantum
mechanics [17–23].
Recently, Ref. [24] put forward a QFT of interacting

symmetric traceless matrices transforming under the action
of the OðNÞ group, while allowing N to assume noninteger
values.OðNÞmodels for noninteger N, an idea widely used
in polymer physics [25], had been previously given a
formal definition in [26], which demonstrated the nonun-
itarity of these models. Hence, the c, a, F theorems are no
longer valid and do not constrain the RG flow, and
consequently Ref. [24] was able to show that the consid-
ered model possesses a limit cycle for N > N� ≈ 4.475.
The main tool used to make this discovery was Hopf’s
theorem [27], which guarantees the existence of a limit
cycle in the vicinity of the codimension-one Andronov-
Hopf bifurcation.
Turning to dynamical systems parametrized by two real

numbers, codimension-two bifurcations can be used to
prove the occurrence of yet other kinds of flow.
Specifically, Bogdanov [28] and Takens [29] have estab-
lished theorems by which, from properties of autonomous
differential equations known only to second order in the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 127, 141602 (2021)

0031-9007=21=127(14)=141602(7) 141602-1 Published by the American Physical Society

https://orcid.org/0000-0002-1159-0574
https://orcid.org/0000-0001-7350-5550
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.141602&domain=pdf&date_stamp=2021-09-29
https://doi.org/10.1103/PhysRevLett.127.141602
https://doi.org/10.1103/PhysRevLett.127.141602
https://doi.org/10.1103/PhysRevLett.127.141602
https://doi.org/10.1103/PhysRevLett.127.141602
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


dynamical variables, one can deduce the existence of
homoclinic orbits, i.e., flow curves that connect a fixed
point to itself. In addition to mild genericity conditions, the
conditions for this bifurcation could be checked by study-
ing the stability of fixed points, despite the fact that
homoclinic orbits signal global bifurcations [2] since they
arise when a limit cycle collides with a saddle point.
An interesting fact about homoclinic orbits is that they

can be used to diagnose chaos. In applications of the theory
of dynamical systems to physics, chaotic behavior [30]
occurs in many instances, such as in turbulence [31,32],
meteorology [33], and even in scattering amplitudes in
string theory [34]. Usually, chaotic behavior is proven via
numerical simulations. One of the few analytical tools that
can hint at the emergence of chaos is a theorem due to
Shilnikov [35] that, for systems possessing homoclinic
orbits, stipulates conditions by which to show they are
chaotic. Therefore, one important step toward uncovering
chaotic RG flow is to establish the existence of homoclinic
RG flow.
In this short Letter, we study a QFTwith global OðNÞ ×

OðMÞ symmetry. Examining the RG flow of the theory as a
function of M and N, we determine the regime with
nonmonotonic flow. In this regime, we establish the
locations of a number of Bogdanov-Takens bifurcations,
by which we conclude that the theory exhibits homoclinic
RG flow. In other words, the model contains the fixed point
with the peculiar property that a deformation by a relevant
operator induces a flow that leads back to the original point:
an RG flow where the IR and UV theories are one and the
same. Homoclinic RG flow can be thought of as inter-
polating between the familiar type of RG flow (where a
system flows from one fixed point to another) and the more
exotic RG limit cycles (like limit cycles, homoclinic orbits
are closed). In unitary QFTs, homoclinic RG flows are still
forbidden by c, a, F theorems, but a fixed point situated in a
homoclinic orbit could possibly be described by a standard
CFT, in contrast to fixed points undergoing a Hopf
bifurcation, and which require operators with complex
scaling dimensions.
The method we adopt can be applied more broadly to

find homoclinic orbits in two-parametric families of the-
ories. We expect the phenomenon to be present in many
other QFTs.
The model.—We consider an N ¼ 1 supersymmetric

model of interacting scalar superfields Φi
ab that is invariant

under the action of an OðNÞ ×OðMÞ group in d ¼ 3 − ϵ
dimensions. The superfields are traceless-symmetric matri-
ces with respect to the action of anOðNÞ group and vectors
under the action of an OðMÞ group. There are four singlet
marginal operators

O1 ¼ tr½ΦiΦiΦjΦj�; O2 ¼ tr½ΦiΦjΦiΦj�;
O3 ¼ tr½ΦiΦi�2; O4 ¼ tr½ΦiΦj�tr½ΦiΦj�; ð1Þ

and so the full action is

S ¼
Z

ddxd2θ

�
tr½ΦiD2

αΦi� þ
X
i

giOi

�
: ð2Þ

The RG flow of this model is gradient. We can find a
function FðgiÞ and a four-by-four matrix Gij such that the
beta functions are

βi ¼ μ
dgi
dμ

¼ Gij
∂F
∂gj : ð3Þ

If Gij is positive or negative definite, this equation implies
that F changes monotonically with the RG flow, so that
cyclic and homoclinic flow lines are impossible. By explicit
computation to leading order in perturbation theory, we
find that the metric has determinant

detG ¼ 1

4
ðM − 1Þ2ðM þ 2Þ2ðN − 3Þ

× ðN − 2Þ2ðN þ 1Þ2ðN þ 4Þ2ðN þ 6Þ: ð4Þ

We list the beta functions and the components of the metric
in Supplemental Material Sec. B [36]. The zeros in detG
occur because of linear relations among the four operator of
the theory at special values of M and N, and their presence
indicates that eigenvalues change sign as N and M are
varied. Indeed one can check that themetric is sign indefinite
ifM ∈ ð−2; 1Þ orN ∈ ð−6; 3Þ, so that unusual RG flows are
possible in this regime, and operators may develop complex
scaling dimensions at “spooky” fixed points [24]. At integer
values ofN andM, such operators are identically zero owing
to the linear relations between the operators. The situation is
closely analogous to the occurrence of evanescent operators
at noninteger spacetime dimensions [37–42].
In the following, we will allow M and N to assume

general real values. In consequence of this analytic exten-
sion, we observe Hopf bifurcations taking place in the
model along various curves in the space of M and N. But
while Hopf bifurcations are a codimension-one bifurcation
widely found in one-parameter systems of autonomous
differential equations, we are dealing with a two-parameter
system, and they exhibit a richer variety of flows.
The possible codimension-two bifurcations can be classed
into five types [2,3]—Bautin, Bogdanov-Takens, cusp,
double-Hopf, and zero-Hopf—which signal different
kinds of flow not present in generic one-parameter systems.
As we shall now see, some of these possibilities are realized
by the QFT with action (2).
Bogdanov-Takens bifurcation.—A Bogdanov-Takens

bifurcation occurs generically when, at a fixed point,
two eigenvalues of the stability matrix ð∂βi=∂gjÞ tend to
zero as two bifurcation parameters M and N are appro-
priately tuned. The following equations must then be
satisfied:
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βiðgi; N;MÞ ¼ 0; det

�∂βi
∂gj

�
ðgi; N;MÞ ¼ 0;

tr

�
⋀3

�∂βi
∂gj

��
≡ det

�∂βi
∂gj

�
tr

��∂βi
∂gj

�
−1
�
¼ 0: ð5Þ

Written in the form (5), we see that the conditions for a
Bogdanov-Takens (BT) bifurcation are polynomial equa-
tions in gi,M, and N, and by Bézout’s theorem there exist a
finite number of points that satisfy these conditions. We
refer to such points as BT points. For the QFT we are
studying perturbatively, the beta functions exhibit several
such points, as shown in Supplemental Material [36]. Their
existence can be checked to high numerical accuracy with
the use of standard programs [43]. Higher-loop contribu-
tions will provide corrections to the precise locations of
these points, but as long as ϵ is sufficiently small, higher-
order corrections will not alter the number or qualitative
behavior of BT points.
While two eigenvalues tend to zero as we approach a BT

point, right at the BT point itself we do not have a pair of
eigenvectors with zero eigenvalues, because two respective
eigenvectors usually become linearly dependent. Rather,
the stability matrix at a BT point has a Jordan block of size
two with zero eigenvalue (see Supplemental Material
Sec. A [36]). This means that the theory at the BT point
possesses two operators O1;2 such that the generator D of
dilatations acts in the following way:

DO1 ¼ dO1; DO2 ¼ dO2 þO1: ð6Þ

The possibility of indecomposable representations of the
conformal group was extensively studied in [44,45]. The
upshot is that the BT theory constitutes a logarithmic CFT
containing generalized marginal operators O1;2. In conse-
quence, BT theories are nonunitary and we have

hO2ð0ÞO2ðxÞi¼−
2kO log jxj

jxj2d ; hO1ð0ÞO2ðxÞi¼
kO
jxj2d ;

for some constant kO.
The conditions (5) are not entirely sufficient for a BT

bifurcation. One must also require smoothness and a set of
inequalities that are generically true. Violations of the
inequalities typically require fine-tuning of additional
parameters. Incidentally, at the integer values M ¼ 2 and
N ¼ 3, right on the boundary of the regimes with mono-
tonic and nonmonotonic RG flows, we observe a fixed
point that satisfies (5), but which fails to meet these
genericity requirements and hence is not described by a
logarithmic CFT.
In Supplemental Material Sec. A [36] we give the precise

statement of the Bogdanov-Takens bifurcation theorem,
and we explicitly check that it applies to a BT point in the
QFT we are studying, situated at M ≈ 0.2945 and
N ≈ 4.036. What this means is that we can transform the

beta functions near the BT point into a particularly simple
form, known as Bogdanov normal form:

_η1 ¼ η2;

_η2 ¼ δ1 þ δ2η1 þ η21 þ sη1η2 þOðjηj3Þ;
_ηi ¼ λiηi for i > 2; ð7Þ

where s ¼ −1, and δ1;2 are functions of N and M that
vanish right at the BT point.
By bringing the system into normal form, we can use

Eqs. (7) to determine the behavior of the system for small
enough δ1 and δ2. In particular, we can constrain ourselves
to studying the surface where only η1 and η2 are nonzero,
noting that the dynamics in the transverse directions η3 and
η4 are quite simple. Depending on δ1 and δ2, the flow of η1;2
falls into different topological types. The classification can
be found in textbook [46] and amounts to the following. In
the vicinity of the BT point at δ1 ¼ δ2 ¼ 0, there are four
regimes with qualitatively different flows:
Regime ①: The flow has no fixed point.
In the other three regimes, the flow has two fixed points,

which we will label left and right. The right point is always
a saddle point.
Regime ②: The left point is unstable, and all flow lines

starting near it terminate at the right fixed point.
Regime ③: The left point is now stable, and a repulsive

limit cycle separates the two fixed points.
Regime ④: The left point is still stable, but the limit cycle

has disappeared. Some flow lines starting near the right
fixed point terminate at the left fixed point. Regions ③ and
④ are separated by a saddle homoclinic bifurcation along
δ1 ¼ −ð6=25Þδ22 þ � � � ; δ2 < 0. In the case of the BT point
at ðM;NÞ ≈ ð0.2945; 4.036Þ, the locations of these four
adjoining regimes, as computed in Supplemental Material
Sec. A [36], are shown in Supplemental Material Fig. 1.
And the RG flow in each regime is depicted in Fig. 1.
A saddle-node bifurcation corresponds to the collision

and disappearance of two equilibria in dynamical systems.
The phenomenon has already been observed in the critical
OðNÞ model [47], prismatic models [48], and in QCD4

[49–52].
An Andronov-Hopf bifurcation represents a change of

stability at a fixed point that has complex eigenvalues. The
flow near the fixed point gives birth to a limit cycle. This
RG flow bifurcation was recently studied in [24].
The most interesting and new phenomenon associated

with the model of the present Letter happens along the
homoclinic bifurcation line. Here the flow exhibits what is
known as a homoclinic orbit.
Homoclinic RG flow.—A homoclinic orbit is a flow line

that connects a stable and an unstable direction of a saddle
point. Figure 2 depicts the kind of homoclinic orbit
generated by a BT bifurcation, with the saddle point
marked by a red dot. The homoclinic orbit envelops another
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fixed point marked in green. In a QFT context, the green
point is “spooky”: the couplings are real, but the stability
matrix ð∂βi=∂gjÞ has complex eigenvalues. In contrast to
such spooky points, and to complex CFTs [51,53], the red
saddle point is associated with real couplings and real
eigenvalues of the stability matrix. These eigenvalues are
small and have opposite signs: λ1;−λ2 ≪ 1. The positive
eigenvalue corresponds to a slightly relevant operator O1

with dimension Δ1 ¼ dþ λ1 > d, and the negative eigen-
value to a slightly irrelevant operator O2 with dimension
Δ2 ¼ dþ λ2 < d. In this sense, the red saddle point
corresponds to a real CFT.
Standard RG lore states that if we perturb a system in the

direction of a relevant operator, then we expect for the
system to lose conformality altogether or to flow to a

different CFT. In the terminology of dynamical systems,
standard RG trajectories are heteroclinic orbits. The
classical example is the Wilson-Fisher fixed point: by
perturbing a Gaussian theory in 4 − ϵ dimension we flow
to a weakly coupled interacting CFT, which in three
dimensions interpolates to the Ising model. Homoclinic
bifurcations provide exotic counterexamples to this general
picture: if we perturb the system in the direction of a
relevant operator, we come back to the original fixed point,
which we can term a homoclinic CFT. Such RG behavior
obviously violates the F theorem so that homoclinic fixed
points must be nonunitary, as is generally the case for CFTs
with symmetry groups of noninteger rank [26].
If we tune the bifurcation parameters to approach the BT

point along the saddle homoclinic bifurcation (the red curve
in Supplemental Material Fig. 1 [36]), then the homoclinic
orbit shrinks to a point and vanishes. In this limit, the red
homoclinic CFT and the green spooky fixed point merge
and become a logarithmic CFT.
Zero-Hopf bifurcations: The road to chaos.—The

Bogdanov-Takens bifurcation is not the only codimen-
sion-two bifurcation that can be observed to take place in
the model (2). The theory also possesses two points in the
space of gi, M, and N where the stability matrix has a pair
of purely imaginary eigenvalues and one zero eigenvalue.
Such fixed points indicate what is known as a Zero-Hopf
(ZH) or a Fold-Hopf bifurcation. This type of bifurcation
was classified in [54] and can be divided into six subtypes.
In the notation of [2], the model has a type I ZH bifurcation
at ðM;NÞ ≈ ð0.8447;−1.807Þ and a type IIa ZH bifurcation
at ðM;NÞ ≈ ð−3.816; 1.188Þ. At a type I bifurcation point,
a saddle-node bifurcation is incident to a pitchfork

FIG. 2. Flow diagram for a dynamical system containing a
homoclinic orbit (marked in black), i.e., a flow line that starts and
ends at the same point. The system is described by Eqs. (7) with
parameters δ1 ¼ −0.000 453 178 and δ2 ¼ −0.044 0214. The red
and green dots indicate fixed points. The green dot is a “spooky”
fixed point. The theory at the red dot is a homoclinic CFT.

FIG. 1. The topologically distinct types of RG flow in the
vicinity of the Bogdanov-Takens bifurcation at M ¼
M� ≈ 0.2945 and N ¼ N� ≈ 4.036. The variables y3 and y4
are linear combinations of the four coupling constants gi, with
precise definitions given in Supplemental Material Sec. A [36],
and δM ¼ M −M�, δN ¼ N − N�.
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bifurcation, and there are no nearby cyclic orbits. At a type
IIa point, a saddle-node bifurcation is again incident to a
pitchfork bifurcation, but additionally a Hopf bifurcation is
also incident to the point, except that the stability coef-
ficient of the associated limit cycle (what was referred to as
the Hopf constant in [24]) exactly vanishes in a quadratic
approximation, so that cubic fluctuations or higher decide
the fate of the cyclic flow near a type IIa point.
Generally, ZH bifurcation points are of particular interest

because it is known that in their vicinity what is known as a
Shilnikov homoclinic orbit may develop and render the
system chaotic [35,46]. Recently it was proven in [55] that
the presence of ZH bifurcations of type III guarantees
the existence of a Shilnikov orbit and a nearby infinite set of
saddle periodic orbits. This nontrivial invariant set can
be embedded in an attracting domain, thus implying
Shilnikov chaos.
The ZH points of the model in the present Letter are not of

type III, andwe cannot claim that the system is chaotic. Itmay
be worthwhile to investigate if there exist other models that
meet the simple criteria for the assured appearance of chaos.
Conclusion and outlook.—The approach suggested and

adopted in [4,24,52] of studying the beta functions and
renormalization of QFTs from the general perspective of
dynamical systems provides a method of understanding the
full range of possible RG flows. A powerful tool to this end
is offered by Bogdanov’s and Taken’s bifurcation theorem
[27], which lists a simple set of conditions that guarantee
the existence of a homoclinc RG orbit, and which can be
checked already at first order in perturbation theory.
In this short Letter we have presented a QFT that satisfies

these conditions, namely a supersymmetric model with
global symmetry group OðNÞ ×OðMÞ, where N and M
play the role of the bifurcation parameters of the system.
We determined a number of parameter values where a BT
bifurcation takes place and investigated the nearby RG flow
to uncover the presence of homoclinic orbits, where the
perturbation of a fixed point by a relevant operator induces
an RG flow that returns to its starting point along an
irrelevant direction. This kind of flow does not violate the F
theorem since it occurs in a nonunitary regime of the
theory: at noninteger values of d, M, and N. Homoclinic
RG flow may also be possible in a unitary theory with a
multivalued F function.
Nonunitary QFTs have a number of physical applica-

tions, such as percolation and random walks [56], though
the considered model (2) with fractional d, M, and N
would be very hard to find in nature or realize in an
experimental setup. However, we could work directly in
d ¼ 3 dimensions by introducing a gauge field and turning
on a Chern-Simons term, which would generate terms in
the beta functions that are linear in the couplings. And
theories with symmetry groups of fractional rank can be

realized in lattice models, for example the OðNÞ loop
models introduced in [57]. In this setting, homoclinic RG
flow would provide an interesting form of UV completion
where a model is described by the same CFT in the UVand
the IR. Moreover, it would present a rare example of the
phenomenon of self-tuning in the presence of an unstable
direction: one could alter the corresponding lattice coupling
and still flow to the same fixed point. For the present model,
however, tuning would still be required since we have two
unstable directions and the self-tuning only applies to one
of these.
There are several bifurcation theorems that give simple

criteria for other novel kinds of RG flows [2,3,46]. Some of
these theorems allow for the determination of the onset of
chaotic flow based on straightforward computations around
fixed points [55]. It would be interesting to find out if QFTs
give birth to chaos when N becomes fractional.
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