Double Copy Relation in AdS Space

Xinan Zhou (周稀楠)

Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA

(Received 27 June 2021; accepted 7 September 2021; published 27 September 2021)

We present a double copy relation in AdS_5 that relates tree-level four-point amplitudes of supergravity, super Yang-Mills, and bi-adjoint scalars.

DOI: [10.1103/PhysRevLett.127.141601](https://doi.org/10.1103/PhysRevLett.127.141601)

Introduction.—Scattering amplitudes in flat space exhibit surprising properties that encode deep lessons for quantum field theories and gravity. While we believe many curved-spacetime generalizations exist, explicit realizations are far from obvious to find. Recently, there has been a lot of activity trying to extend two remarkable flat-space properties, color-kinematic duality [\[1\]](#page-4-0) and the double copy relation [\[2\]](#page-4-1), to the simplest curved background: the anti–de Sitter (AdS) space [3–[8\]](#page-4-2) [\[9\]](#page-5-0). The flat-space relations relate gauge theory and gravity amplitudes and have numerous applications in modern amplitude research [\[12\]](#page-5-1). Since AdS/CFT maps AdS amplitudes to conformal field theory (CFT) correlators, generalizations to AdS are especially interesting. While color-kinematic duality has been observed for four points [\[5](#page-4-3)–8], AdS double copy so far has only worked for three-point functions [\[3,4\].](#page-4-2) In fact, it was not clear if the flat-space relation has to be drastically modified at higher points. In this Letter, we present an AdS generalization that realizes the double copy construction in four-point amplitudes for the first time. We relate tree-level amplitudes in AdS₅ \times S⁵ IIB supergravity, AdS₅ \times S³ supersymmetric Yang-Mills (SYM), and nonsupersymmetric AdS₅ \times S¹ bi-adjoint scalars in a simple way that mirrors the flat-space relation. Moreover, our AdS relation works for all amplitudes in these theories, applying to massless and massive particles alike.

We will use the Mellin representation for CFT correlators [\[14,15\]](#page-5-2). AdS amplitudes become Mellin amplitudes and enjoy a simple analytic structure resembling the flat-space one. Tree-level Mellin amplitudes of AdS supergravity and super gauge theories in various spacetime dimensions were systematically studied in [\[7,16](#page-5-3)–23], and a Mellin colorkinematic relation similar to the flat-space one was pointed out in [\[7\]](#page-5-3). Unfortunately, applying the flat-space double copy prescription led to no sensible amplitudes. In this Letter, we revisit these results. We will focus on AdS_5 and take advantage of supersymmetry, which allows us to reduce the Mellin amplitudes to simpler "reduced" Mellin amplitudes. We find that it is in these reduced objects that color-kinematic duality and the double copy relation are naturally realized.

Schematically, we will write the reduced amplitude of AdS₅ super gluons with $\mathcal{N} = 2$ superconformal symmetry as a finite sum labeled by integers i , j :

$$
\widetilde{\mathcal{M}} \sim \sum_{i,j} \frac{n_s^{i,j} c_s}{s - s_{i,j}} + \frac{n_t^{i,j} c_t}{t - t_{i,j}} + \frac{n_u^{i,j} c_u}{u - u_{i,j}},
$$

where the number of terms is determined by the external masses. $c_{s,t,u}$ are standard color factors satisfying $c_s + c_t + c_u = 0$. The kinematic factors $n_{s,t,u}^{i,j}$ turn out to obey the same relation $n_s^{i,j} + n_t^{i,j} + n_u^{i,j} = 0$, giving rise to
on AdS color kinematic duality Benlesing equality is an AdS color-kinematic duality. Replacing $c_{s,t,u}$ with $n_{s,t,u}^{i,j}$, we recover precisely super graviton reduced amplitudes of $AdS_5 \times S^5$ IIB supergravity [\[16,17\]](#page-5-4). On the other hand, replacing $n_{s,t,u}^{i,j}$ by $c_{s,t,u}$ leads to Mellin amplitudes of conformally coupled bi-adjoint scalars on $AdS_5 \times S^1$, which were not studied in the literature. We will prove this fact by direct calculation. The AdS_5 double copy relation presented here relates theories with varying $\mathcal{N} = 0, 2, 4$ superconformal symmetry. However, it also implies that purely bosonic theories of Einstein gravity, Yang-Mills, and bi-adjoint scalars on AdS_5 should be related by double copy, as we will briefly discuss at the end.

Four-point correlators: No supersymmetry.—Let us start with the nonsupersymmetric case. We consider the correlator of four scalar operators \mathcal{O}_{k_i} with conformal dimensions k_i [\[24\]](#page-5-5):

$$
G_{k_1k_2k_3k_4} = \langle \mathcal{O}_{k_1} \mathcal{O}_{k_2} \mathcal{O}_{k_3} \mathcal{O}_{k_4} \rangle. \tag{1}
$$

In Mellin space, correlators are represented as [\[14,15\]](#page-5-2)

$$
G_{k_1k_2k_3k_4} = \int_{-i\infty}^{i\infty} [dsdt] K(x_{ij}^2; s, t, u) \mathcal{M}_{k_1k_2k_3k_4} \Gamma_{\{k_i\}}(s, t, u),
$$
\n(2)

 $0.031-9007/21/127(14)/141601(7)$ 141601-1 Published by the American Physical Society

Published by the American Physical Society under the terms of the [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/) license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP³.

where $[dsdt] = [dsdt/(4\pi i)^2]$, and $K(x_i^2; s, t, u)$ is a factor containing all spacetime dependence:

$$
K(x_{ij}^2; s, t, u) = (x_{12}^2)^{\frac{s-k_1-k_2}{2}} (x_{34}^2)^{\frac{s-k_3-k_4}{2}} (x_{14}^2)^{\frac{t-k_1-k_4}{2}} (x_{23}^2)^{\frac{t-k_2-k_3}{2}} (x_{13}^2)^{\frac{u-k_1-k_3}{2}} (x_{24}^2)^{\frac{u-k_2-k_4}{2}}.
$$

Here, $x_{ij} = x_i - x_j$, and s, t, u are Mandelstam variables satisfying $s + t + u = \sum_{i=1}^{4} k_i \equiv \Sigma$ [\[25\].](#page-5-6) We have also extracted a factor of Gamma functions factor of Gamma functions,

$$
\Gamma_{\{k_i\}}(s,t,u) = \Gamma\left[\frac{k_1+k_2-s}{2}\right] \Gamma\left[\frac{k_3+k_4-s}{2}\right] \Gamma\left[\frac{k_1+k_4-t}{2}\right] \Gamma\left[\frac{k_2+k_3-t}{2}\right] \Gamma\left[\frac{k_1+k_3-u}{2}\right] \Gamma\left[\frac{k_2+k_4-u}{2}\right],\tag{3}
$$

that captures the contribution of double-trace operators universally present in the holographic limit [\[15\].](#page-5-7) All dynamic information is contained in $\mathcal{M}_{k_1k_2k_3k_4}$, known as the "Mellin amplitude." The four-point function Gk1k2k3k⁴ obeys Bose symmetry, which permutes operators. Bose symmetry acts on the Mellin amplitude by interchanging k_i , as well as permuting the Mandelstam variables s, t, u in the same way it acts on a flat-space amplitude.

Four-point correlators: $\mathcal{N} = 2$ superconformal
numetry —We now consider CFTs with $\mathcal{N} - 2$ supersymmetry.—We now consider CFTs with $\mathcal{N} = 2$ super-
conformal symmetry focusing on the **L**-Bogomol'nyiconformal symmetry, focusing on the $\frac{1}{2}$ -Bogomol'nyi-Prasad-Sommerfield $(\frac{1}{2}$ -BPS) operators. These operators are of the form $\mathcal{O}_k^{a_1...a_k}$, where $a_i = 1, 2$ are indices of the R-symmetry group $SU(2)_R$ [\[26\].](#page-5-8) The operator $\mathcal{O}_k^{a_1...a_k}$
transforms in the spin $i = (k/2)$ representation of $SU(2)$ transforms in the spin $j_R = (k/2)$ representation of $SU(2)_R$ and has conformal dimensions $k = 2, 3, \dots$ To conveniently keep track of the $SU(2)_R$ indices, we contract them with auxiliary two-component spinors v^a :

$$
\mathcal{O}_k(x,v) = \mathcal{O}_k^{a_1...a_k} v^{b_1}...v^{b_k} \epsilon_{a_1b_1}... \epsilon_{a_kb_k}.
$$
 (4)

We then consider their four-point functions [Eq. [\(1\)\]](#page-0-0) and define the Mellin amplitude $\mathcal{M}_{k_1k_2k_3k_4}^{\mathcal{N}=2}$ via Eq. [\(2\).](#page-0-1)

The $\mathcal{N} = 2$ superconformal symmetry imposes extra constraints on the form of correlators via the superconformal Ward identities [\[27\].](#page-5-9) Solving them leads to

$$
G_{k_1k_2k_3k_4}^{\mathcal{N}=2} = G_{0,k_1k_2k_3k_4}^{\mathcal{N}=2} + R^{(2)} H_{k_1k_2k_3k_4}^{\mathcal{N}=2},\tag{5}
$$

where $G_{0,k_1k_2k_3k_4}^{N=2}$ is the protected part of the correlator independent of marginal couplings. The factor $R^{(2)}$ is crossing symmetric and is fixed by superconformal symmetry to be

$$
R^{(2)} = (v_1 \cdot v_2)^2 (v_3 \cdot v_4)^2 x_{13}^2 x_{24}^2 (1 - z\alpha)(1 - \bar{z}\alpha). \quad (6)
$$

Here, $v_i \cdot v_j = v_i^a v_j^b \epsilon_{ab}, \ \alpha = \frac{[(v_1 \cdot v_3)(v_2 \cdot v_4)]}{[(v_1 \cdot v_2)(v_3 \cdot v_4)]}$ is the $SU(2)_R$ cross ratio, and z, \overline{z} are conformal cross ratios given by

$$
z\bar{z} = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} = U, \qquad (1-z)(1-\bar{z}) = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2} = V. \tag{7}
$$

All the dynamical information is contained in the simpler "reduced" correlator $H_{k_1k_2k_3k_4}^{\mathcal{N}=2}$, which can be viewed as a correlator of operators with shifted conformal dimensions $k_i + 1$ and shifted $SU(2)_R$ spins $(k_i/2) - 1$.

In the regime to be considered, corresponding to AdS tree level, the reduced correlator in fact captures all the information. To make it more precise, let us define a reduced Mellin amplitude via the reduced correlator

$$
H_{k_1k_2k_3k_4}^{\mathcal{N}=2} = \int_{-i\infty}^{i\infty} [dsdt] K(x_{ij}^2; s, t, \tilde{u}) \widetilde{\mathcal{M}}_{k_1k_2k_3k_4}^{\mathcal{N}=2} \Gamma_{\{k_i\}}(s, t, \tilde{u}).
$$

Note that it is important to shift the u variable to $\tilde{u} = u - 2$ so that $s + t + \tilde{u} = \Sigma - 2$. The shift is to compensate the nonzero weights of the factor $R^{(2)}$ under conformal transformations. As a consequence, Bose symmetry acts differently in the full and reduced Mellin amplitudes as

$$
\mathcal{M}_{k_1k_2k_3k_4}^{\mathcal{N}=2}
$$
: permuting *s*, *t*, *u*,

$$
\widetilde{\mathcal{M}}_{k_1k_2k_3k_4}^{\mathcal{N}=2}
$$
: permuting *s*, *t*, \widetilde{u} . (8)

In the tree-level regime, the protected part $G_{0,k_1k_2k_3k_4}^{N=2}$ does not contribute to the Mellin amplitude [\[7\]](#page-5-3). Rather it is generated by a contour pinching mechanism described in [\[17\]](#page-5-10). Therefore, full amplitudes are *completely* determined by reduced amplitudes, with the precise relation given by translating both sides of Eq. [\(5\)](#page-1-0) into Mellin space

$$
\mathcal{M}_{k_1k_2k_3k_4}^{\mathcal{N}=2} = \mathbb{R}^{(2)} \circ \widetilde{\mathcal{M}}_{k_1k_2k_3k_4}^{\mathcal{N}=2}.
$$
 (9)

The factor $R^{(2)}$ now becomes a difference operator $\mathbb{R}^{(2)}$ [\[7\]](#page-5-3). To obtain it, we interpret each monomial U^mV^n in

$$
\frac{R^{(2)}}{(v_1 \cdot v_2)^2 (v_3 \cdot v_4)^2 x_{13}^2 x_{24}^2}
$$
 (10)

as a difference operator $U^m V^n \to \mathbb{O}_{m,n}^{(2)}$ that acts on functions $f(s, t)$ according to

$$
\mathbb{O}_{m,n}^{(\mathcal{N})} \circ f(s,t) = \frac{\Gamma_{\{k_i\}}(s-2m, t-2n, \Sigma-\mathcal{N}-s-t+2m+2n)}{\Gamma_{\{k_i\}}(s,t, \Sigma-s-t)} \times f(s-2m, t-2n). \tag{11}
$$

Four-point correlators: $N = 4$ superconformal symmetry.—The kinematics of $\mathcal{N} = 4$ is similar. The $\frac{1}{2}$ -
RPS operator labeled by an integer $k = 2, 3$ transforms BPS operator, labeled by an integer $k = 2, 3, \dots$, transforms in the rank-k symmetric traceless representation of the $SO(6)_R$ R-symmetry group and has dimension k. We keep track of the R-symmetry indices by using null $SO(6)$ vectors t^r [\[28\]](#page-5-11):

$$
O_k(x,t) = O^{r_1...r_k}(x)t^{r_1}...t^{r_k}, \qquad r_i = 1,...,6, \quad (12)
$$

where $t \cdot t = 0$. The $\mathcal{N} = 4$ superconformal symmetry dictates that the four-point function is of the form [\[27,29\]](#page-5-9)

$$
G_{k_1k_2k_3k_4}^{\mathcal{N}=4} = G_{0,k_1k_2k_3k_4}^{\mathcal{N}=4} + R^{(4)} H_{k_1k_2k_3k_4}^{\mathcal{N}=4},\tag{13}
$$

where $G_{0,k_1k_2k_3k_4}^{N=4}$ is the protected part, and $H_{k_1k_2k_3k_4}^{N=4}$ is the reduced correlator. Note that the reduced correlator also has shifted quantum numbers, with dimensions $k_i + 2$ and SO(6) spin $k_i - 2$ for each operator. The factor $R^{(4)}$ is determined by supersymmetry

$$
R^{(4)} = t_{12}^2 t_{34}^2 x_{13}^4 x_{24}^4 (1 - z\alpha)(1 - \bar{z}\alpha)(1 - z\bar{\alpha})(1 - \bar{z}\bar{\alpha}) \tag{14}
$$

and doubles the $\mathcal{N} = 2$ factor [Eq. [\(6\)](#page-1-1)]. Here $t_{ij} = t_i \cdot t_j$, and

$$
\alpha \bar{\alpha} = \frac{t_{13} t_{24}}{t_{12} t_{34}} = \sigma, \qquad (1 - \alpha)(1 - \bar{\alpha}) = \frac{t_{14} t_{23}}{t_{12} t_{34}} = \tau. \tag{15}
$$

The full correlator $G_{k_1k_2k_3k_4}^{N=4}$ gives rise to the full amplitude $\mathcal{M}_{k_1k_2k_3k_4}^{N=4}$ via Eq. [\(2\).](#page-0-1) The $\mathcal{N}=4$ reduced amplitude is similarly given by

$$
H_{k_1k_2k_3k_4}^{\mathcal{N}=4} = \int_{-i\infty}^{i\infty} [dsdt] K(x_{ij}^2; s, t, \tilde{u}) \widetilde{\mathcal{M}}_{k_1k_2k_3k_4}^{\mathcal{N}=4} \Gamma_{\{k_i\}}(s, t, \tilde{u}).
$$

But note here that the shift in \tilde{u} is by 4, i.e., $\tilde{u} = u - 4$. The greater shift is due to the higher conformal weights of $R^{(4)}$. Bose symmetry again permutes *s*, *t*, *u* in $\mathcal{M}_{k_1k_2k_3k_4}^{\mathcal{N}=4}$ and *s*, *t*, \tilde{u} in $\widetilde{\mathcal{M}}_{k_1k_2k_3k_4}^{\mathcal{N}=4}$. At AdS tree level, the protected part again does not contribute to the Mellin amplitude [\[16,17\]](#page-5-4). Therefore, the full amplitudes are determined by the reduced amplitudes via

$$
\mathcal{M}_{k_1k_2k_3k_4}^{\mathcal{N}=4} = \mathbb{R}^{(4)} \circ \widetilde{\mathcal{M}}_{k_1k_2k_3k_4}^{\mathcal{N}=4},\tag{16}
$$

where we have promoted $R^{(4)}$ into a difference operator $\mathbb{R}^{(4)}$ [\[16,17\]](#page-5-4). The action of each monomial U^mV^n in $R^{(4)}/[(t_{12})^2(t_{34})^2x_{13}^4x_{24}^4]$ is given by Eq. [\(11\)](#page-2-0) with $\mathcal{N}=4$.

Super gluon amplitudes.—We are now ready to discuss holographic correlators in specific theories. We start with super gluons in AdS₅ preserving $\mathcal{N} = 2$ superconformal symmetry, which can be realized as D3 branes probing F theory singularities [\[30,31\],](#page-5-12) or as $\mathcal{N} = 4$ SYM with probe flavor D7 branes [\[32\]](#page-5-13). In both case, there is an $AdS_5 \times S^3$ subspace in the holographic description, on which live localized degrees of freedom transforming in the adjoint representation of a color group G_F . These degrees of freedom form a vector multiplet, and its Kaluza-Klein reduction gives infinite towers of $\frac{1}{2}$ -BPS superconformal multiplets. We refer to the $\frac{1}{2}$ -BPS superprimaries as super gluons. At large central charge, gravity decouples and one has only a spin-1 gauge theory. Note $S³$ has isometry $SO(4) = SU(2)_R \times SU(2)_L$. The first factor is identified with the $\mathcal{N} = 2$ R-symmetry group, while the second $SU(2)_L$ is a global symmetry suppressed in the above discussion. The operator \mathcal{O}_k has spin $[(k-2)/2]$ under $SU(2)$. [31] We can similarly contract the indices with $SU(2)_L$ [\[31\].](#page-5-14) We can similarly contract the indices with $k - 2 SU(2)_L$ spinors $\bar{v}^{\bar{a}}$, $\bar{a} = 1, 2$. In reduced correlators, v
and \bar{v} further recombine into null vectors of $SO(4)$ via Pauli and \bar{v} further recombine into null vectors of $SO(4)$ via Pauli matrices and appear only as polynomials of t_{ij} [\[7\]:](#page-5-3)

$$
t^{r'} = \sigma_{a\bar{a}}^{r'} v^a \bar{v}^{\bar{a}}, \qquad r' = 1, ..., 4, \qquad t \cdot t = 0. \tag{17}
$$

To write down the super gluon amplitudes, let us choose, without loss of generality, the ordering $k_1 \leq k_2 \leq k_3 \leq k_4$, and distinguish two cases:

$$
k_1 + k_4 \ge k_2 + k_3
$$
(case I), $k_1 + k_4 < k_2 + k_3$ (case II).

To measure the deviation from the equal weight case $k_i = (\Sigma/4)$, it is useful to introduce the following parameters:

$$
\kappa_s = |k_3 + k_4 - k_1 - k_2|, \qquad \kappa_t = |k_1 + k_4 - k_2 - k_3|,
$$

$$
\kappa_u = |k_1 + k_3 - k_2 - k_4|.
$$
 (18)

The reduced Mellin amplitudes are given by [\[7,33\]](#page-5-3)

$$
\widetilde{\mathcal{M}}_{k_1k_2k_3k_4}^{N=2} = \sum_{\substack{i+j+k=\mathcal{E}-2\\0\le i,j,k\le\mathcal{E}-2}} \frac{\sigma^i \tau^j}{i!j!k!(\frac{2i+\kappa_u}{2})!(\frac{2j+\kappa_t}{2})!(\frac{2k+\kappa_s}{2})!} \times \left[\frac{n_s^{i,j}c_s}{s-s_M+2k} + \frac{n_t^{i,j}c_t}{t-t_M+2j} + \frac{n_u^{i,j}c_u}{\tilde{u}-u_M+2i}\right] \times I(t_{ab}),
$$

which has been rewritten to manifest Bose symmetry. Let us unpack this expression a bit. Here,

$$
\mathcal{E} = \frac{k_1 + k_2 + k_3 - k_4}{2} \text{ (case I)}, \qquad \mathcal{E} = k_1 \text{ (case II)}
$$

is the "extremality," which determines the complexity of the amplitude. After extracting a factor in t_{ab} ,

$$
I(t_{ab}) = t_{34}^{\frac{\kappa_3}{2}} t_{24}^{\frac{\kappa_4}{2}} (t_{12} t_{34})^{-\mathcal{E}+2} \times \begin{cases} t_{14}^{\frac{\kappa_1}{2}} & \text{(case I)}\\ t_{23}^{\frac{\kappa_1}{2}} & \text{(case II)} \end{cases}, \quad (19)
$$

the reduced Mellin amplitudes are degree- $(\mathcal{E} - 2)$ polynomials in σ and τ defined in Eq. [\(15\)](#page-2-1). The color dependence is captured by the color factors

$$
c_s = f^{I_1 I_2 J} f^{J I_3 I_4}, \qquad c_t = f^{I_1 I_4 J} f^{J I_2 I_3}, \qquad c_u = f^{I_1 I_3 J} f^{J I_2 I_4},
$$

where f^{IJK} are the structure constants of the color group G_F . Thanks to the Jacobi identity, they satisfy $c_s + c_t + c_u = 0$. The kinematic factors $n_{s,t,u}^{i,j}$ are given by

$$
n_s^{i,j} = \frac{1}{t - t_M + 2j} - \frac{1}{\tilde{u} - u_M + 2i},
$$

\n
$$
n_t^{i,j} = \frac{1}{\tilde{u} - u_M + 2i} - \frac{1}{s - s_M + 2k},
$$

\n
$$
n_u^{i,j} = \frac{1}{s - s_M + 2k} - \frac{1}{t - t_M + 2j}.
$$
\n(20)

The nonlocality of these expressions is only superficial and should not raise any alarm. In fact, a similar phenomenon occurs in flat space [\[34\].](#page-5-15) Evidently, $n_{s,t,u}^{i,j}$ obey

$$
n_s^{i,j} + n_t^{i,j} + n_u^{i,j} = 0,
$$
 (21)

which gives rise to a realization of the "color-kinematic duality" [\[1\]](#page-4-0) in AdS. In contrast to the duality pointed out in [\[7\]](#page-5-3), this new realization has the same form for both massless $(k_i = 2)$ and massive $(k_i > 2)$ super gluons. Finally, the remaining parameters are given by

$$
s_M = \min\{k_1 + k_2, k_3 + k_4\} - 2,
$$

\n
$$
t_M = \min\{k_1 + k_4, k_2 + k_3\} - 2,
$$

\n
$$
u_M = \min\{k_1 + k_3, k_2 + k_4\} - 2.
$$
\n(22)

Super graviton amplitudes.—Let us now take a further step with the color-kinematic duality [Eq. [\(21\)\]](#page-3-0) and replace color factors $c_{s,t,u}$ in each monomial $\sigma^i \tau^j$ by kinematic factors $n_{s,t,u}^{i,j}$. The result is

$$
\widetilde{\mathcal{M}}_{k_{1}k_{2}k_{3}k_{4}}^{\mathcal{N}=2\otimes\mathcal{N}=2} = \sum_{\substack{i+j+k=\mathcal{E}-2 \\ 0\leq i,j,k\leq \mathcal{E}-2}} \frac{\sigma^{i} \tau^{j}}{i!j!k!(\frac{2i+\kappa_{u}}{2})!(\frac{2j+\kappa_{t}}{2})!(\frac{2k+\kappa_{s}}{2})!} \times \frac{-9I(t_{ab})}{(s-s_{M}+2k)(t-t_{M}+2j)(\tilde{u}-u_{M}+2i)}.
$$

To interpret it as $\mathcal{N} = 4$ reduced amplitudes, we need to *replace* the \tilde{u} variable with the $\mathcal{N} = 4$ one, as required by Bose symmetry of $\widetilde{\mathcal{M}}_{k_1k_2k_3k_4}^{\mathcal{N}=4}$. Furthermore, we replace the $SO(4)$ vectors $t^{r'}$ by $SO(6)$ null vectors [\[35\].](#page-5-16) Remarkably, it gives all the super graviton reduced Mellin amplitudes of it gives all the super graviton reduced Mellin amplitudes of IIB supergravity on AdS₅ \times S⁵ [\[16,17\]](#page-5-4)

$$
\widetilde{\mathcal{M}}_{k_1k_2k_3k_4}^{\mathcal{N}=4} = \sqrt{k_1k_2k_3k_4} \times \widetilde{\mathcal{M}}_{k_1k_2k_3k_4}^{\mathcal{N}=2\otimes\mathcal{N}=2} \tag{23}
$$

up to an overall factor [\[36\].](#page-5-17) This generalizes the "double copy relation" [\[2\]](#page-4-1) into AdS space for four-point functions [\[38\]](#page-5-18). In fact, redefining the super gravitons by $\mathcal{O}_k \rightarrow$ \mathcal{O}_k/\sqrt{k} gets rid of the normalization factor and gives the super graviton three-point functions also as the square of the super gluon ones [\[39\].](#page-5-19)

Bi-adjoint scalar amplitudes.—In flat space, one can also replace kinematic factors by color factors and obtain amplitudes of bi-adjoint scalars. We show that the same happens in AdS, and it serves as a nontrivial check. Note that in the above example the superconformal factor $R^{(2)}$ was doubled to $R^{(4)}$ [c.f. Eqs. [\(6\)](#page-1-1) and [\(14\)\]](#page-2-2). Going in the opposite direction, we expect $R^{(0)} = 1$, i.e., the resulting theory has no supersymmetry. Moreover, since the internal spaces changed from S^3 to S^5 , a reasonable guess is that this sequence starts with $S¹$, which will soon be confirmed. The symmetry groups are therefore $SO(N + 2)$, and we recall that operators in the reduced amplitudes transform in the rank- $(k_i - 2)$ symmetric traceless representation.

Note that for $\mathcal{N} = 0$, the null polarization vectors are two-component. Since we can rescale the null vectors, we are left with two inequivalent choices:

$$
t_{\pm} = \frac{1}{\sqrt{2}} (1, \pm i). \tag{24}
$$

The dimension k operator $\mathcal{O}_k^{\pm} \equiv \mathcal{O}_k(x, t_{\pm})$ has $\pm (k - 2)$
charges under $U(1) - SO(2)$ depending on the polarizacharges under $U(1) = SO(2)$, depending on the polarization chosen. Moreover, we assume the scalar interactions are only cubic. Then, $U(1)$ charge conservation dictates that at least one of the κ_s , κ_t , κ_u parameters in Eq. [\(18\)](#page-2-3) is zero. For the chosen ordering $k_1 \leq k_2 \leq k_3 \leq k_4$, we must impose the condition $\kappa_t = 0$. This leaves

$$
\langle \mathcal{O}_{k_1}^+ \mathcal{O}_{k_2}^- \mathcal{O}_{k_3}^- \mathcal{O}_{k_4}^+ \rangle, \quad \text{or} \quad \langle \mathcal{O}_{k_1}^- \mathcal{O}_{k_2}^+ \mathcal{O}_{k_3}^+ \mathcal{O}_{k_4}^- \rangle, \quad (25)
$$

which have identical amplitudes [\[41\].](#page-5-20) Noting

$$
\sigma = 1,
$$
\n $\tau = 0,$ \n $I(t_{ab}) = 1$ \n(26)

and replacing $n_{s,t,u}^{ij}$ with the color factors $c'_{s,t,u}$ for another color group G_F' , we find

$$
\mathcal{M}_{k_1k_2k_3k_4}^{\mathcal{N}=0} = \sum_{\substack{i+k=\mathcal{E}-2\\0\le i,k\le\mathcal{E}-2\\j\le J}} \frac{-2\mathcal{N}_{k_1k_2k_3k_4}}{i!k!(\frac{2i+\kappa_u}{2})!(\frac{2k+\kappa_s}{2})!} \times \left[\frac{c_s c'_s}{s-s_M+2k} + \frac{c_t c'_t}{t-t_M} + \frac{c_u c'_u}{u-u_M+2i}\right].
$$
\n(27)

We dropped the tildes because nonsupersymmetric theories have only full amplitudes [Eq. [\(2\)](#page-0-1)], and there is no shift in the *u* variable. We also included a to-be-determined k_i dependent normalization factor $-2\mathcal{N}_{k_1k_2k_3k_4}$ as in the supergravity case. Remarkably, Eq. [\(27\)](#page-4-4) can be rewritten as the sum of *three* AdS_5 scalar exchange diagrams:

$$
\mathcal{N}_{k_1k_2k_3k_4} \left[\frac{c_s c'_s}{p_s - 1} \mathcal{S}_{p_s}^{(s)} + \frac{c_t c'_t}{p_t - 1} \mathcal{S}_{p_t}^{(t)} + \frac{c_u c'_u}{p_u - 1} \mathcal{S}_{p_u}^{(u)} \right],\qquad(28)
$$

where $S_p^{(s)}$ is the amplitude of exchanging a dimension-p scalar in the s-channel (and similarly for the other two channels) [\[42\]:](#page-5-21)

$$
\mathcal{S}_{p}^{(s)} = \sum_{m=0}^{\infty} \frac{-2\left(\frac{2+p-k_{1}-k_{2}}{2}\right)_{m}\left(\frac{2+p-k_{3}-k_{4}}{2}\right)_{m}}{(s-p-2m)m!(p-1)_{m}\Gamma\left[\frac{k_{1}+k_{2}-p}{2}\right]\Gamma\left[\frac{k_{3}+k_{4}-p}{2}\right]}\times \frac{\Gamma[p]}{\Gamma\left[\frac{k_{1}-k_{2}+p}{2}\right]\Gamma\left[\frac{k_{2}-k_{1}+p}{2}\right]\Gamma\left[\frac{k_{3}-k_{4}+p}{2}\right]\Gamma\left[\frac{k_{4}-k_{3}+p}{2}\right]}.
$$

Moreover, the weights $p_{s,t,u}$ are precisely those selected by the $U(1)$ charge conservation

$$
p_s = k_2 - k_1 + 2
$$
, $p_t = k_1 + k_4 - 2$, $p_u = k_3 - k_1 + 2$.

Note that Eq. [\(27\)](#page-4-4) is equivalent to Eq. [\(28\)](#page-4-5), is highly nontrivial, and a priori does not need to happen. We can further fix the normalization $\mathcal{N}_{k_1k_2k_3k_4}$ by noting $\mathcal{N}_{k_1k_2k_3k_4}/(p_s - 1)$, etc., have the interpretation of products of three-point function coefficients $C_{k_1k_2p_s}C_{k_3k_4p_s}$. The solution, up to a k_i -independent overall factor, is

$$
C_{k_1k_2k_3} = \frac{1}{\sqrt{(k_1 - 1)(k_2 - 1)(k_3 - 1)}}.\tag{29}
$$

Finally, we confirm by direct calculation that the theory is conformally coupled scalars on $AdS_5 \times S^1$. The conformal mass on this manifold is $M_{\text{conf}}^2 = -4$ [\[43\]](#page-5-22).
Decomposing the scalar field ϕ into S^1 modes Decomposing the scalar field ϕ into S¹ modes $\phi(z,\tau) = \sum_{n=-\infty}^{\infty} \varphi_n(z) e^{in\tau}$, we find each mode has mass $M^2 - n^2 = 4$. This translates into a conformal dimension $M_n^2 = n^2 - 4$. This translates into a conformal dimension $|n| + 2$, agreeing with our charge-dimension relation $n = \pm (k - 2)$. We can further check three-point functions. A cubic vertex ϕ^3 in AdS₅ × S¹ gives rise to infinitely many AdS₅ cubic vertices $\sum \varphi_{n_1} \varphi_{n_2} \varphi_{n_3}$, where $\{n_i\}$ conserve the $U(1)$ charge. Using the result of [\[44\]](#page-5-23), it is straightforward to show that three-point functions are precisely as in Eq. [\(29\).](#page-4-6) Note that both $C_{k_1k_2k_3}$ and $\mathcal{N}_{k_1k_2k_3k_4}$ can be set to one by redefining $\mathcal{O}_k \to \sqrt{k-1}\mathcal{O}_k$. Then, the double copy relation also holds for three-point functions.

Discussions.—In this Letter, we found an extension of the double copy relation in curved spacetimes that relates all tree-level four-point functions of $AdS_5 \times S^5$ IIB supergravity, $AdS_5 \times S^3$ SYM, and $AdS_5 \times S^1$ bi-adjoint scalars. Although our result is supersymmetric, it has immediate implications on bosonic Einstein gravity and Yang-Mills theory in AdS_5 with no internal factor. Thanks to supersymmetry, four-graviton and four-gluon amplitudes can be obtained from the reduced correlators of $k_i = 2$ super gravitons and super gluons by action of differential operators [\[45\]](#page-5-24). At tree level, these spinning correlators are identical to the ones in bosonic theories because the exchanged fields are the same [\[46\].](#page-5-25) Our result, then, indicates that the bosonic amplitudes should also be related by a double copy construction [\[47\]](#page-5-26), the details of which we will leave for a future work. Another interesting direction is to extend our results to higher points, although more data on holographic correlators is needed [\[48\].](#page-6-0) While the focus here is $AdS₅$ amplitudes, double copy relations for other backgrounds are also worth exploring. In particular, the $AdS₇$ case [\[21\]](#page-5-27) admits similar definitions of reduced amplitudes [\[50,51\].](#page-6-1) Finally, it would be interesting to explore extensions at higher genus, where the relevant CFT techniques were developed in [\[52\].](#page-6-2)

I thank Fernando Alday, Henrik Johansson, and Lionel Mason for very helpful comments on the manuscript. This work is supported in part by the Simons Foundation Grant No. 488653.

- [1] Z. Bern, J. J. M. Carrasco, and H. Johansson, New relations for gauge-theory amplitudes, [Phys. Rev. D](https://doi.org/10.1103/PhysRevD.78.085011) 78, 085011 [\(2008\).](https://doi.org/10.1103/PhysRevD.78.085011)
- [2] Z. Bern, John Joseph M. Carrasco, and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105[, 061602 \(2010\)](https://doi.org/10.1103/PhysRevLett.105.061602).
- [3] J. A. Farrow, A. E. Lipstein, and P. McFadden, Double copy structure of CFT correlators, [J. High Energy Phys. 02 \(2019\)](https://doi.org/10.1007/JHEP02(2019)130) [130.](https://doi.org/10.1007/JHEP02(2019)130)
- [4] A. E. Lipstein and P. McFadden, Double copy structure and the flat space limit of conformal correlators in even dimensions, Phys. Rev. D 101[, 125006 \(2020\).](https://doi.org/10.1103/PhysRevD.101.125006)
- [5] C. Armstrong, A. E. Lipstein, and J. Mei, Color/kinematics duality in $AdS₄$, [J. High Energy Phys. 02 \(2021\) 194.](https://doi.org/10.1007/JHEP02(2021)194)
- [6] S. Albayrak, S. Kharel, and D. Meltzer, On duality of color and kinematics in (A)dS momentum space, [J. High Energy](https://doi.org/10.1007/JHEP03(2021)249) [Phys. 03 \(2021\) 249.](https://doi.org/10.1007/JHEP03(2021)249)
- [7] L. F. Alday, C. Behan, P. Ferrero, and X. Zhou, Gluon scattering in AdS from CFT, [J. High Energy Phys. 06 \(2021\)](https://doi.org/10.1007/JHEP06(2021)020) [020.](https://doi.org/10.1007/JHEP06(2021)020)
- [8] P. Diwakar, A. Herderschee, R. Roiban, and F. Teng, BCJ amplitude relations for anti-de sitter boundary correlators in embedding space, [arXiv:2106.10822.](https://arXiv.org/abs/2106.10822)
- [9] See, e.g., Refs. [\[10,11\]](#page-5-28) for progress in other curved backgrounds.
- [10] T. Adamo, E. Casali, L. Mason, and S. Nekovar, Scattering on plane waves and the double copy, [Classical Quantum](https://doi.org/10.1088/1361-6382/aa9961) Gravity 35[, 015004 \(2018\).](https://doi.org/10.1088/1361-6382/aa9961)
- [11] T. Adamo, E. Casali, L. Mason, and S. Nekovar, Plane wave backgrounds and colour-kinematics duality, [J. High Energy](https://doi.org/10.1007/JHEP02(2019)198) [Phys. 02 \(2019\) 198.](https://doi.org/10.1007/JHEP02(2019)198)
- [12] See Ref. [\[13\]](#page-5-29) for a recent comprehensive review.
- [13] Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, and R. Roiban, The duality between color and kinematics and its applications, [arXiv:1909.01358.](https://arXiv.org/abs/1909.01358)
- [14] G. Mack, D-independent representation of conformal field theories in D dimensions via transformation to auxiliary dual resonance models. Scalar amplitudes, [arXiv:](https://arXiv.org/abs/0907.2407) [0907.2407](https://arXiv.org/abs/0907.2407).
- [15] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, [J. High Energy Phys. 03 \(2011\) 025.](https://doi.org/10.1007/JHEP03(2011)025)
- [16] L. Rastelli and X. Zhou, Mellin Amplitudes for $AdS_5 \times S^5$, Phys. Rev. Lett. 118[, 091602 \(2017\).](https://doi.org/10.1103/PhysRevLett.118.091602)
- [17] L. Rastelli and X. Zhou, How to succeed at holographic correlators without really trying, [J. High Energy Phys. 04](https://doi.org/10.1007/JHEP04(2018)014) [\(2018\) 014.](https://doi.org/10.1007/JHEP04(2018)014)
- [18] L. Rastelli, K. Roumpedakis, and X. Zhou, $AdS_3 \times S^3$ treelevel correlators: Hidden six-dimensional conformal symmetry, [J. High Energy Phys. 10 \(2019\) 140.](https://doi.org/10.1007/JHEP10(2019)140)
- [19] S. Giusto, R. Russo, A. Tyukov, and C. Wen, Holographic correlators in $AdS₃$ without Witten diagrams, [J. High](https://doi.org/10.1007/JHEP09(2019)030) [Energy Phys. 09 \(2019\) 030.](https://doi.org/10.1007/JHEP09(2019)030)
- [20] S. Giusto, R. Russo, A. Tyukov, and C. Wen, The CFT_6 origin of all tree-level 4-point correlators in $AdS_3 \times S^3$, [Eur.](https://doi.org/10.1140/epjc/s10052-020-8300-4) Phys. J. C 80[, 736 \(2020\).](https://doi.org/10.1140/epjc/s10052-020-8300-4)
- [21] L. F. Alday and X. Zhou, All Tree-Level Correlators for M-Theory on $AdS_7 \times S^4$, Phys. Rev. Lett. **125**[, 131604 \(2020\).](https://doi.org/10.1103/PhysRevLett.125.131604)
- [22] L. F. Alday and X. Zhou, All Holographic Four-Point Functions in All Maximally Supersymmetric CFTs, [Phys.](https://doi.org/10.1103/PhysRevX.11.011056) Rev. X 11[, 011056 \(2021\)](https://doi.org/10.1103/PhysRevX.11.011056).
- [23] C. Wen and S.-Q. Zhang, Notes on gravity multiplet correlators in $AdS_3 \times S^3$, [J. High Energy Phys. 07 \(2021\)](https://doi.org/10.1007/JHEP07(2021)125) [125.](https://doi.org/10.1007/JHEP07(2021)125)
- [24] In this paper, the two-point functions of all \mathcal{O}_k are unit normalized.
- [25] Note that only two of the three Mandelstam variables are independent. While rewriting a function of s , t in terms of s , t , u is not unique, there is no ambiguity in defining expressions using all three variables.
- [26] There is also a $U(1)$, R-symmetry in the $\mathcal{N} = 2$ superconformal algebra but the $\frac{1}{2}$ -BPS operators are not charged under $U(1)$.
- [27] M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl. Phys. B711[, 409 \(2005\).](https://doi.org/10.1016/j.nuclphysb.2005.01.013)
- [28] These null vectors automatically project the indices to the symmetric traceless representation.
- [29] B. Eden, A. C. Petkou, C. Schubert, and E. Sokatchev, Partial nonrenormalization of the stress tensor four point function in $N = 4$ SYM and AdS/CFT, [Nucl. Phys.](https://doi.org/10.1016/S0550-3213(01)00151-1) **B607**, [191 \(2001\)](https://doi.org/10.1016/S0550-3213(01)00151-1).
- [30] A. Fayyazuddin and M. Spalinski, Large N superconformal gauge theories and supergravity orientifolds, [Nucl. Phys.](https://doi.org/10.1016/S0550-3213(98)00545-8) B535[, 219 \(1998\).](https://doi.org/10.1016/S0550-3213(98)00545-8)
- [31] O. Aharony, A. Fayyazuddin, and J.M. Maldacena, The Large N limit of $N = 2$, $N = 1$ field theories from three-branes in F theory, [J. High Energy Phys. 07 \(1998\)](https://doi.org/10.1088/1126-6708/1998/07/013) [013.](https://doi.org/10.1088/1126-6708/1998/07/013)
- [32] A. Karch and E. Katz, Adding flavor to AdS/CFT, [J. High](https://doi.org/10.1088/1126-6708/2002/06/043) [Energy Phys. 06 \(2002\) 043.](https://doi.org/10.1088/1126-6708/2002/06/043)
- [33] Here, we have set the gauge coupling to a convenient value that does not affect the physics.
- [34] In flat-space $\mathcal{N} = 4$ SYM, the four-point superamplitude at tree level can be similarly written as $\delta^{4}(Q)\delta^{4}(\tilde{Q})\left[(c_{s}n_{s}/2)+(c_{t}n_{t}/t)+(c_{u}n_{u}/u)\right]$. $\delta^{4}(Q)\delta^{4}(\tilde{Q})$ is roughly identified with $R^{(2)}$, and the numerators $n_s = \frac{1}{3} [(1/t) - (1/u)], \quad n_t = \frac{1}{3} [(1/u) - (1/s)]$ $n_{\mu} =$ $\frac{1}{3}[(1/s)-(1/t)]$ are similarly nonlocal. However, this non-
locality is moraly an extitect of manifesting all the super locality is merely an artifact of manifesting all the supersymmetry. We thank H. Johansson for comments on this.
- [35] Note that the dimensionality of the SO group is invisible in scalar products t_{ab} .
- [36] The k_i -dependent normalization factor was fixed in Ref. [\[37\]](#page-5-30). We have also set the Newton constant to a convenient value.
- [37] F. Aprile, J. Drummond, P. Heslop, and H. Paul, The double-trace spectrum of $N = 4$ SYM at strong coupling, Phys. Rev. D 98[, 126008 \(2018\)](https://doi.org/10.1103/PhysRevD.98.126008).
- [38] In flat space, the four-point superamplitude of $\mathcal{N} = 8$ supergravity has the form $\delta^8(Q)\delta^8(\tilde{Q})[(-1)/stu]$, where the doubled supercharge delta functions correspond to $R^{(4)}$. Note the supergravity amplitude is also related to the flatspace SYM amplitude in Ref. [\[34\]](#page-5-15) by the double copy relation $c_{s,t,u} \rightarrow n_{s,t,u}$.
- [39] The new normalization makes the three-point function coefficients of super gravitons [\[40\]](#page-5-31) independent of k_i , i.e., $C_{k_1k_2k_3} \sim 1$. The super gluons have exactly the same three-point functions [\[7\].](#page-5-3)
- [40] S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, Three point functions of chiral operators in $D = 4$, $N = 4$ SYM at large N, [Adv. Theor. Math. Phys.](https://doi.org/10.4310/ATMP.1998.v2.n4.a1) 2, 697 (1998).
- [41] They are the charge conjugation of each other.
- [42] Here, the normalization is such that the scalar operator p has a unit operator product expansion coefficient.
- [43] We have set $R_{\text{AdS}} = R_{\text{S}} = 1$.
- [44] D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, Correlation functions in the CFT $(d)/AdS(d + 1)$ correspondence, [Nucl. Phys.](https://doi.org/10.1016/S0550-3213(99)00053-X) B546, 96 (1999).
- [45] G. P. Korchemsky and E. Sokatchev, Four-point correlation function of stress-energy tensors in $\mathcal{N} = 4$ superconformal theories, [J. High Energy Phys. 12 \(2015\) 133.](https://doi.org/10.1007/JHEP12(2015)133)
- [46] This follows directly from the symmetry selection rules.
- [47] The kinematic numerators in this case will likely admit a local form, but they will be gauge-dependent.
- [48] The five-point function of AdS_5 massless super gravitons has been computed in Ref. [\[49\].](#page-6-3)
- [49] V. Gonçalves, R. Pereira, and X. Zhou, $20'$ five-point function from $AdS_5 \times S^5$ supergravity, [J. High Energy](https://doi.org/10.1007/JHEP10(2019)247) [Phys. 10 \(2019\) 247.](https://doi.org/10.1007/JHEP10(2019)247)
- [50] L. Rastelli and X. Zhou, Holographic four-point functions in the (2, 0) theory, [J. High Energy Phys. 06 \(2018\) 087.](https://doi.org/10.1007/JHEP06(2018)087)
- [51] X. Zhou, On superconformal four-point Mellin amplitudes in dimension $d > 2$, [J. High Energy Phys. 08](https://doi.org/10.1007/JHEP08(2018)187) [\(2018\) 187.](https://doi.org/10.1007/JHEP08(2018)187)
- [52] O. Aharony, L. F. Alday, A. Bissi, and E. Perlmutter, Loops in AdS from conformal field theory, [J. High Energy Phys.](https://doi.org/10.1007/JHEP07(2017)036) [07 \(2017\) 036.](https://doi.org/10.1007/JHEP07(2017)036)