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With subrecoil-laser-cooled atoms, one may reach nanokelvin temperatures while the ergodic properties
of these systems do not follow usual statistical laws. Instead, due to an ingenious trapping mechanism in
momentum space, power-law-distributed sojourn times are found for the cooled particles. Here, we show
how this gives rise to a statistical-mechanical framework based on infinite ergodic theory, which replaces
ordinary ergodic statistical physics of a thermal gas of atoms. In particular, the energy of the system
exhibits a sharp discontinuous transition in its ergodic properties. Physically, this is controlled by the
fluorescence rate, but, more profoundly, it is a manifestation of a transition for any observable, from being
an integrable to becoming a nonintegrable observable, with respect to the infinite (non-normalized)

invariant density.
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Laser-cooled atoms are important for fundamental and
practical applications [1-3]. It is well known that Lévy
statistics describes the unusual properties of the cooling
processes [4—11]. For subrecoil-laser cooling, a special
atomic trap in momentum space is engineered. The most
efficient cooling is found when a mean trapping time,
defined more precisely below, diverges [6]. The fact that the
characteristic time diverges implies that the ergodic proper-
ties of these systems must differ from those of standard
gases [6,12,13]. Ergodicity is a fundamental aspect of
statistical mechanics that implies that the time and ensem-
ble averages coincide. This is found when the measurement
time is made long compared to the timescale of the
dynamics. However, in the context of subrecoil-laser cool-
ing, this time diverges, and, hence, no matter how long one
measures, deviations from standard ergodic theory are
prominent. Given that lasers replace heat baths in many
cooling experiments, what are the ergodic properties of the
system? In other words, what replaces the usual ergodic
statistical framework? Our goal is to show how tools of
infinite ergodic theory describe the statistical properties of
the ensemble and corresponding time averages of the
subrecoil-laser-cooled atoms.

Infinite ergodic theory was investigated by mathemati-
cians [14-16] and more recently in physics [17-32]. In
general, infinite ergodic theory deals with a peculiar non-
normalized density, describing the long-time limit of a
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system, called below the infinite invariant density. Previous
works in the field of subrecoil-laser cooling [6,33] foresaw
this quasisteady state. We will see how to use this tool to
investigate the ensemble averages of physical observables.
However, this does not give direct information on the time
averages, and here we will develop physical and math-
ematical insights on the latter. The basic question is how to
relate ensemble and time averages, even when ergodicity in
its standard formulation is broken. In particular, we inves-
tigate the energy of the system. Since the atoms are
noninteracting, in a classical thermal setting, the energy
of the atoms per degree of freedom would be kg7 /2, as a
consequence of Maxwell’s velocity distribution. At vari-
ance with this, we will show that the energy of a subrecoil-
laser-cooled gas is obtained under certain conditions with a
non-normalizable invariant density. A sharp transition is
exposed, in the statistical properties of the energy, when
the fluorescence rate, given by R(v) o |v|* in the vicinity of
zero velocity, is varied, more precisely when a = 3. In
Raman subrecoil cooling, « is controlled by the pulse
shape, allowing a, in principle, to attain any value [6,34—
36]. Hence, the rich phase diagram of ergodic properties
seems to be within reach of experimental investigations.
This new type of transition is related to the fact that the
energy observable can switch from being an integrable
observable, with respect to the infinite density, to being
nonintegrable.
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Let p(v,t) be the probability density function (PDF) of
the speed v > 0 of the atoms at time ¢. A master equation
governs its evolution with typical gain and loss terms:

apvt) / (0 > v)p
(1)

The transition rate from v to v" is W(v — v') = R(v) f(v').
Here, R(v) = 1/z(v) is the fluorescence rate, and f(v)
denotes the PDF of v after the atom experiences a
spontaneous jolt. It is natural to consider the long-time
limit of the PDF p(wv,f). Considering the steady-state
condition dp(v,1)/0t = 0 gives the time-independent sol-
ution p*(v) = 7z(v)f(v)/Z, where Z, if it exists, is a time-
independent constant obtained from the normalization
condition. We treat the highly relevant non-normalizable
case.

Indeed, for subrecoil-laser cooling, the fluorescence time
7(v) is given by 7(v) ~ cv™ for v — 0, and then p*(v)
becomes non-normalizable, for a > 1. As we will see, this
non-normalizable function should not be ignored. An
analysis of the master equation [37] and following the
footsteps of Refs. [6,33] yields

(', 1) =W(v—2")p(v,1)]dv.

lim Z(#)p(v

m ) =1(v)f(v)=Z(v) fora>1. (2)

A calculation gives Z(t) = zl'(1 +y)f(0)c’t'~7/ sinzy
withy = 1/ a In contrast, if @ < 1, the usual normalization
Z=[>f v)dv, is found. For the case under study,
y<lora > 1 the integration over Z(v) diverges, due to
the small v behavior of 7(v), and, hence, Z(v) is called an
infinite invariant density. Note that, on the left-hand side of
Eq. (2), we multiply the normalized density p(v, t) with a
function Z(7) increasing with time; therefore, on the right-
hand side, we find in the long-time limit a non-
normalizable function. The question is, what is the physical
meaning of this state? And how can we use the infinite
invariant density to construct a nontrivial ergodic theory for
the gas?

One can argue that the infinite density cannot provide the
full picture, as it is non-normalizable. Indeed, for long but
finite times, the density of the velocity of the particles can
be described by two regimes. As the density evolves, it
shrinks in its width, peaking at zero velocities. In the inner
region, the density p(v, r) exhibits a scaling solution, given
by [6] p(v, 1) ~ " g(vt’) with

Q(X)I%CCXP (—%N) A xﬁp(#)dz. (3)

This describes velocities of the order of 1/#, i.e., an inner
region of the packet, vanishing for + — oo [37].

The scaling solution [Eq. (3)] and the infinite density
[Eq. (2)] are not separable and together yield a complete
description. Mathematically, the two solutions match at
intermediate velocities [37]. Equation (3) predicts that the
full width at half maximum (FWHM) of the velocity PDF
decays like 1~/? for @ = 2 and as 1~'/* for a = 4. These
theoretical predictions were indeed observed in the labo-
ratory with cesium [34,36]; see also quantum Monte Carlo
simulation and experiments with helium in Refs. [6,13].
However, the scaling solution [Eq. (3)] exhibits what might
appear as an unphysical feature. Considering the realistic
case a = 2, the scaling function alone predicts that the
second moment of the velocity, namely, the kinetic energy,
is infinite, due to the fat tail of the scaling function for large
v, and in this sense the system cannot be considered cold.
This issue is cured, using the non-normalized solution
[Eqg. (2)]. In general, we need to classify observables based
on whether they are integrable or nonintegrable with
respect to Z(v). These two classes have vastly different
ergodic properties, as shown below.

Ensemble and time averages.—Let v(t) be the random
velocity process of an atom. We consider generic observ-
ables O[v(t)], and we study their time and ensemble
averages. As examples, consider O[v(1)] = v*(t) =
E (1), which is the kinetic energy when we set
m/2 =1, and the indicator function Olv(t)] = I[v, <
v(t) <wv,] =1 if v, <wv(t) <wv, and zero otherwise.
By definition, the ensemble average is (O(1)) =
J&° O(v)p(v, t)dv, so using Eq. (2) we find

limZ (1) (O(1)) = / ® I(0)O()dy < 0, (4)
—00 0

showing that the non-normalized density Z (v) is used in the
computation of ensemble averages, in a way reminiscent of
the standard averaging for equilibrated systems. The only
condition is that the observable is integrable with respect to
Z(v), namely, that the integral exists. Since Z(v) ~ v™* for
small velocity, the kinetic energy is an integrable observ-
able for a < 3 but nonintegrable otherwise. The critical
value @ = 3 or y = 1/3 will mark an ergodicity transition
for this observable. In contrast, the indicator function is
always an integrable observable, provided that v, > 0.

A goal of ergodic theories is to relate the ensemble
and time averages, denoted with an overline: O(t) =
JoOlu())d? /t [40]. According to the standard ergodic
hypothes1s, O(1)/{(O) = 1 in the limit of long measure-
ment times. In our case, the time averages remain random,
and we will soon investigate their fluctuations. To start, we
consider an ensemble of paths and average over time and

then over the ensemble:

_ 1 [t

0= [‘owiar) <1 [ [*owptutravar.
0

(5)
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Because we consider the limit of long measurement times,
our asymptotic form of the integrand Eq. (2) yields

L[t [0 I(v)dy [ O()I(v)dv
O

(O(1)~ (6)

where we used O <y < 1. This resembles the standard
calculation of time averages when the invariant density is
normalizable. We conclude that, for integrable observables
and if y < 1,

lim L20) _ 1 (7)
= (O(1) 7

Thus, we established a relation between the time average
and the ensemble average. The latter is obtained using the
infinite density Z (v), and, thus, this invariant density is not
merely a tool for the calculation of the ensemble average,
but rather it gives also information on the time average.
From Eq. (7), when y — 1 we approach standard ergodic
behavior. Physically, this is related to the observation made
below, that the mean time between velocity updates
diverges for y < 1.

The time averages are functionals of the stochastic path
v(t), and we now develop a machinery to explore their
statistical properties. We focus on the kinetic energy
observable, due to its physical importance. To analyze it,
we recall the stochastic process under study. Initially, we
draw v from f(v), and the particle then remains in this state
for a random time denoted 7. This time 7 is exponentially
distributed with the lifetime z(v) that depends on the
velocity. The process is then renewed; namely, after waiting
for a time 7, we draw a new velocity from f(v) and, hence,
a new lifetime, etc. In simulations below, following
Ref. [6], we use a uniform PDF f(v) = /v, for v <
Vmax and 7(v) = cv™®. Using Egs. (4) and (7),

Sin(rr) (vma)>/" ()

r(1+y)z 3y—1 \r

(8)

where Ey(t) = [¢ E;(¢)df' /t. This holds when the energy
is an integrable observable, so 1/3 <y < 1. In contrast,
when 1 <y, we are in the regime of standard ergodic
theory. Interestingly, when we take y — 1/3, the prefactor
in Eq. (8) diverges and becomes v,,,, independent. This
marks the entry into the phase where the energy is non-
integrable. Having calculated the expectation of the time-
averaged energy with the infinite density Z(v), the real
challenge is to obtain the distribution of E|.

We rewrite the time average E;(t) = S(t)/t, where S(t)
is the action. The key idea is to investigate the distribution
of the action and with this to infer the ergodic properties of
the process. We perform this task with a new form of

(B ~ 2T

yt'r

coupled continuous-time random walks, which, in turn, is a
variation of the well-known Lévy walk [41-46]. In the time
interval of observation (0, ¢), we have N(¢) random renewal
events, and the pairs of waiting times and velocities are
labeled (v;,7;), where i =1,...,N(¢) (v, is the initial
condition). We rewrite the action S(z) = va:(i) s; + sp(1)
with s; = (v;)?7;, which is reminiscent of a biased random
walk process. The increments s; > 0 are constrained, since
the measurement time is ¢ = Zivz(i) 7; + t5(t). Here, tp is
the backward recurrence time [47,48], the time elapsing
between the last update in the process and the measurement
time . Similarly, s5(1) = (vy(+1)*25(?) is the contribution
to the action, from the last time interval in the sequence.

To advance the theory, we need the joint PDF of action
increments s and waiting times 7 denoted ¢ (s, 7), obtained

from [y dvf(v)8(s — v*%) exp|—%/7(v)]/7(v), giving

({5 o

when 0 < s < v2,.7 and zero otherwise. Here, the waiting
times 7 and action increments s are correlated. Integrating
over s yields the PDF of the waiting times (%) whose fat
tail reads (%) ~ constz~!=7 with const= ¢’ yT'(1 +7)/ Vmax.
The divergence of the mean waiting time for 0 <y < 1
signals special ergodic properties [12].

Let P(S,t) be the PDF of the action at time 7. The
first step in the analysis is to relate this PDF to Eq. (9).
Employing the renewal property of the process [47,49,50],
we establish this relation using Laplace transforms. Let
P(u,p) = [ [ dSdtexp(—uS — pt)P(S, 1) be the dou-
ble Laplace transform S — u and t — p of the PDF P(S, 1).
Then we derive the Montroll-Weiss—like [51] equation [37]

P(s.7) =

)
)

P(u. p) = Dlu. p)

o) 10

Here, éﬁ(u p) is the double Laplace transform of ¢(s, %),
and ®(u, p) corresponds to

Vmax d
O(s, 1) A U exp [=R(0)15]6(s — 151?).

11
Umax ( )
This term stems from the contribution to the action s =
vty from the last increment in the sequence, namely, from
the backward recurrence time ¢z, while exp[—R(v)13] is the
probability of not jolting in that time interval.

Using Eq. (10) to investigate the ergodic properties of
the process, we define the dimensionless random variable
Y = E,/(E,). We first focus on the case when the
observable is integrable, namely, 1/3 < y < 1. In standard
ergodic theories, found here if 1 < y, the distribution of
T will approach a delta function centered on unity.
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By definition, Y = S(t)/[t(E(¢))], and here an analysis of
Eq. (10) is useful, since it yields the distribution of S and
then the distribution of the sought-after Y. A detailed
analysis shows that the PDF of T denoted by ML(Y) is
given by the universal Mittag-Leffler (ML) law

1/y (14 4H)t/r
ML) = o) lﬂ([ ) ) a2

Here, [,,(.) is the one-sided Lévy PDF. This law, which
replaces Birkhoff’s ergodic theory, is a concrete manifes-
tation of the Darling-Kac theorem [14,15]. Our physical
approach was to show how this law is related to the laser-
cooling parameters, i.e., to y. This law is valid for any
observable of interest, provided that it is integrable; for
example, we verified this numerically for the energy
observable in Fig. 1 but also for the indicator function.
In the limit y — 1, ML(Y) reduces to a delta function, as
expected.

When the energy is a nonintegrable observable, namely,
0 <y < 1/3, the calculation of the mean energy cannot be
made with the infinite density, since the result will diverge.
Instead, the ensemble-averaged kinetic energy is found
using the scaling solution [Eq. (3)], implying that the
energy is now sensitive to the inner part of the velocity
packet [37]:

sin(zy) I
E (1) ~ s 13
B~ GGy T =2) € (13)
This behavior is universal in the sense that this result
does not depend on v,,,,, unlike Eq. (8). A simple time
integration gives the relation between time and ensemble

average (E (1)) ~ (Ex(#))/(1 = 2y), which clearly differs
from the generic behavior found for integrable observ-
ables [Eq. (7)].

To characterize the fluctuations of the time averages, one
defines the ergodicity-breaking parameter [52]

_(ER0) - B _ (S0 - (50
BT E0r o o W

which is zero in the long-time limit, if the process is
ergodic, namely, for y > 1. In the phase where energy is
integrable, EB = [2I'2(1 + y) — I'(1 + 2y)]/T°(1 + 2y), for
1/3 <y < 1, which is universal in the sense of going
beyond the observable of interest. For example, this
describes also the fluctuations of the number of renew-
als N(r).

Returning to the case y < 1/3, we find the second
moment of the action, obtained in Laplace space after
differentiation of Eq. (10):

a 08
b (a ' (b)
0.6
= 8 & 04l f
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“ 111
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FIG. 1. In the process of subrecoil-laser cooling, the PDF P(Y)

of the time-averaged energy Y = E;(r)/(E,(¢)) exhibits a wide
range of physical behaviors. Wheny = 1/a > 1, ergodicity holds
and the PDF approaches a delta function in the long-measure-
ment-time limit; see finite time simulations in (a) with @ = 0.8
(details in Ref. [37]). When a = 1.25, the energy is integrable
with respect to the infinite measure, and P(Y) is nontrivial
though it has a peak close to unity, since at this stage we are not
too far from the ergodic phase (b). For @ = 2 and a = 4, we find
that the distributions are nondistinguishable and described by a
half-Gaussian, presented in (c). Here, the energy observable is
integrable in the first case, while it is not in the second; further
note that the Mittag-Leffler distribution is half-Gaussian when
a =2, since y =1/2. When a = 6, the energy observable is
nonintegrable and P(T) diverges for Y — 0, indicating very large
deviations from usual ergodic behavior (d). In the limit & — oo,
we get a discontinuous behavior, a sharp cutoff at T = 3 [see (e)
and simulation with @ = 50]. Finally, the EB parameter (f) ex-
hibits a cusp at y = 1/a = 1/3. This value marks a transition for
the ergodic behavior of the system, from an energy that is
integrable with respect to the infinite measure to nonintegrable. In
the figure, simulations match theoretical predictions without
fitting.

A 9> d(u,p)
(S P) =577 . (15)
u~ 1 = ¢(u, p)lu=o
We find asymptotically, for large times and for

0<y<1/3,

2%(2—-2y) [sin?(3zy)(1 — 5y)
e

sin(zy) sin(5xy) + 37] -1 (9)

This expression clearly differs from the EB parameter found
in the Darling-Kac phase 1/3 <y < 1. When y — 0, we
find EB = 4/5. In this limit, the particle maintains a constant
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velocity for (nearly) all the observation time, so
E, =v* and, using the uniform f(v), lim, (EB=
((vYy—=(v*)?)/(v*)>=4/5. The EB parameter versus
0 <y <1 is plotted in Fig. 1(f), and it exhibits a clear
transition when y = 1/3. Thus, switching from the case
when energy is integrable to nonintegrable manifests itselfin
nontrivial fluctuations of the time averages.

We have investigated semianalytically the distribution of
the time averages also in the nonintegrable phase y < 1/3,
namely, @ > 3. Here, the Mittag-Leffler law is not valid
anymore. In Fig. 1, we present some of the main results of
this mathematically challenging domain. For example, we
find lim,_, P(Y) = Y~1/2/(2V/3) for T < 3; otherwise,
P(Y) = 0. This result can be explained, as for the EB
parameter, by noting that the atom maintains a constant
velocity for practically all the duration of the measurement;
i.e., in this limit T = »?/(»?), and the PDF of v is the
uniform f(v). For the experimentally relevant case o = 4
(y =1/4), we find that the distribution of Y > 0 is half-
Gaussian; see Fig. 1(c). Interestingly, this case also marks a
transition: The PDF of Y diverges at the origin for any
a > 4 and vanishes there for 3 < a < 4. This means that for
a > 4 the most likely time average is found for cases where
it is much smaller than the ensemble average. Finally, for
a =6 [33], we find the solution in terms of a Fox-H

P(Y) =~ 1 (cr

function [39]:
-9
rG) (=51

with C = 3/4I'(5/3), which perfectly matches the simu-
lation presented in Fig. 1(d).

What are the consequences for cooling? Remarkably,
using Egs. (7), (8), and (13), we conclude that the most
efficient cooling, in the sense of the fastest relaxation of
the mean energy, is found for @ = 3. Thus, the transition in
the ergodic properties of the system investigated here is
physically connected to optimal cooling of energy. In
contrast, for the FWHM of the velocity packet [34], we
do not have such an optimum. Thus, the classification of an
observable as either integrable (energy a < 3) or non-
integrable (energy o > 3, FWHM) with respect to the
infinite invariant measure is crucial, both mathematically
and physically. Moreover, we discovered for a >4 an
accumulation effect, namely, the divergence of the PDF of
the time averages, found at low energies, e.g., Fig. 1(d),
where @ =6 and T — 0. This means that a significant
population of atoms remains at small velocities for the
whole duration of the experiment. In turn, this is useful
when one wishes to reduce scattering or spatial spreading,
namely, holding atoms close to the dark zero momentum
state for long durations. Thus, while for the optimization of
relaxation time of the FWHM, which decays as =12 one
should consider small values of a to obtain fast relaxation

(say, a = 2), to maintain some of the population with small
kinetic energy for long durations, large values of a (say,
a = 6) are beneficial, as the trapping times become
statistically longer. Surprisingly, @ = 4 marks a quantitative
transition of the low-energy statistics, which we discovered
from the analysis of the time averages.
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