
Observation of Symmetry-Protected Selection Rules in Periodically
Driven Quantum Systems

Guoqing Wang (王国庆) ,1,* Changhao Li (李长昊),1,* and Paola Cappellaro1,2,†
1Research Laboratory of Electronics and Department of Nuclear Science and Engineering,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 25 May 2021; revised 9 August 2021; accepted 9 September 2021; published 29 September 2021)

Periodically driven (Floquet) quantum systems have recently been a focus of nonequilibrium physics by
virtue of their rich dynamics. Time-periodic systems not only exhibit symmetries that resemble those in
spatially periodic systems, but also display novel behavior that arises from symmetry breaking. Charac-
terization of such dynamical symmetries is crucial, but often challenging due to limited driving strength and
lack of an experimentally accessible characterization technique. Here, we show how to reveal dynamical
symmetries, namely, parity, rotation, and particle-hole symmetries, by observing symmetry-induced Floquet
selection rules. Notably, we exploit modulated driving to reach the strong light-matter coupling regime, and
we introduce a protocol to experimentally extract the transition matrix elements between Floquet states from
the system coherent evolution. By using nitrogen-vacancy centers in diamond as an experimental test bed, we
execute our protocol to observe symmetry-protected dark states and dark bands, and coherent destruction of
tunneling. Our work shows how one can exploit the quantum control toolkit to study dynamical symmetries
that arise in the topological phases of strongly driven Floquet systems.
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Symmetries play an important role in determining
system properties: they can lead to intriguing physical
phenomena, such as topological phases [1–7], and univer-
sality classes [8]. As an example, different phases of
topological insulators have been arranged into a periodic
table [1]. Engineering novel quantum materials with
desired symmetry properties [2–5] can be challenging.
Time-periodic systems provide an alternative solution with
increased versatility, even enabling novel dynamical phases
that are absent in static systems [9–14], as the periodic
driving can force the system towards topological phases
[15–17]. These dynamical time symmetries are described
by Floquet theory [6], in analogy to the description of
spatial symmetries by Bloch theory.
A hallmark of symmetries is the presence of induced

selection rules. Selection rules of transitions between
Floquet states have recently been analyzed theoretically
[18], but their experimental observation remains challeng-
ing. First, although strong light-matter coupling is required
to generate high-order Floquet bands, this regime is
difficult to reach in practice due to the finite strength of
the driving fields. Second, observing the selection rules
requires an experimental toolkit that enables an extraction
of transition elements between Floquet states. In this
Letter, we tackle both challenges and provide a feasible
solution by combining modulated driving with the obser-
vation of the subsequent quantum coherent dynamics, to
experimentally detect symmetry-induced selection rules—
and their breaking.

Recent years have witnessed a rapid development of
exquisite quantum control techniques that can enable
engineered driving beyond hardware limitations [19]. For
example, concatenated continuous driving (CCD), origi-
nally introduced to counteract driving inhomogeneities in
dynamical decoupling [20–22], has recently been shown to
allow one to reach the strong-coupling regime and uncover
phenomena such as high-order Mollow triplets [23] that
would be “invisible” in simple driving protocols. Here we
exploit modulated driving not only to achieve an effective
strong-coupling regime even with limited driving strength,
but also to engineer driving transitions (such as double-
quantum transitions) that would otherwise not be directly
accessible. To extract transition elements between Floquet
states, we further develop a protocol based on monitoring
the coherent state evolution by projective measurements,
which enacts a mapping of the dynamical dipole matrix
elements describing Floquet band transitions to measurable
Rabi oscillation amplitudes. We take advantage of the
controllability and long coherence times achieved in qubit-
like systems [24–26], avoiding the need for dissipation and
for “pump-probe”methods traditional in atomic and optical
physics. Our method, also applicable to general N-level
quantum systems, is thus convenient in many modern
quantum platforms.
By exploiting these technical advances, we are able to

experimentally study parity and particle-hole symmetries
by monitoring the evolution of two levels of a nitrogen-
vacancy (NV) center in diamond, under modulated driving.
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Our experiments reveal the emergence of dark states and
dark bands and their vanishing once the corresponding
symmetries are broken—as well as coherent destruction of
tunneling [27–30]. We further show that modulated driving
can engineer a rotationally symmetric Hamiltonian over the
NV center three levels, further indicating that our methods
are broadly applicable, and exemplify an important step
toward exploring topological phases that arise in Floquet
systems [10].
Methods.—Spatially periodic Hamiltonians in solid-state

physics can be analyzed by Bloch theory, which predicts a
periodic structure in reciprocal space. Likewise, the dynam-
ics of a periodically driven Hamiltonian HðtÞ ¼ Hðtþ TÞ
is solved by Floquet theory, yielding a series of equidistant
energy bands (manifolds) λμ þ nωm (n ∈ Z) with Floquet
eigenenergies λμ and frequencies ωm ¼ 2π=T [6,31]. The
time-dependent Schrödinger equation is indeed equi-
valent to the eigenvalue problem for a time-independent
Floquet matrix ½HðtÞ − ið∂=∂tÞ�jΦμðtÞi ¼ λμjΦμðtÞi. The
Floquet eigenstates jΦμðtÞi have the same period as the
Hamiltonian and can be decomposed into Fourier series as
jΦμðtÞi ¼ Pþ∞

n¼−∞ e−inωmtjΦμ
ni [31]. The evolved state is

then a superposition of Floquet eigenstates,

jΨðtÞi ¼
X
μ

cμe−itλ
μ jΦμðtÞi ¼

X
μ;n

cμjΦμ
nie−itðnωmþλμÞ; ð1Þ

with the coefficients cμ set by initial conditions at t ¼ 0.
Consider a time-independent symmetry operator Ŝ

(rotation, parity, particle-hole, etc.) satisfying

Ŝ
�
HðβStþ tSÞ − i

d
dt

�
Ŝ−1 ¼ αS

�
HðtÞ − i

d
dt

�
; ð2Þ

where fαS; βSg ∈ f1;−1g and tS define the detailed para-
meters of the symmetry. Then the Floquet eigenstates also
have the same symmetry jΦμ0 ðtÞi ¼ πSμ ŜjΦμðβStþ tSÞi,
with jπμj ¼ 1, as derived in Ref. [18]. These symmetries
can be probed by evaluating the susceptibility, e.g., in light
scattering experiments of a probe field V, in analogy with
“pump-probe” schemes common in atomic and optical
physics. The susceptibility depends on the dynamical
dipole matrix elements associated with the probing
operator V

VðnÞ
μ;ν ¼ 1

T

Z
T

0

hΦμðtÞjVjΦνðtÞie−inωmtdt; ð3Þ

where n denotes the energy band order. When Ŝ†VŜ ¼
αVV, the dynamical symmetry gives rise to symmetry-
protected selection rules, including symmetry-protected

dark states (spDSs) for VðnÞ
μ;ν ¼ 0, symmetry-protected dark

bands (spDBs) for vanishing susceptibility of complete
bands, and symmetry-induced transparency (siT) due to the
destructive interference between nonzero elements [18,32].

Rather than measuring the susceptibility in a pump-
probe experiment [18], here we establish a general exper-
imental method to directly measure the dipole operator V.
Specifically, we draw a correspondence between the dipole
matrix elements, typical of light scattering experiments,
and measurable Rabi oscillation amplitudes arising in the
context of coherent state evolution. We show that in a
coherent system, the amplitudes of the Fourier components
of hVðtÞi display the desired properties (spDBs, spDSs, siT,
etc.) associated with dipole matrix elements VðnÞ

μ;ν .
We consider a generic N-level quantum system and

introduce the spectral decomposition V ¼ P
k Vkjkihkj,

such that the dipole matrix elements in Eq. (3) can be
calculated as

VðnÞ
μ;ν ¼ Vk

X
p

hΦμ
pjkihkjΦν

p−ni: ð4Þ

From Eqs. (1), (4) the expectation value of VðtÞ is then

hVi ¼ hΨðtÞjVjΨðtÞi ¼
X
μ;ν;n

cμ�cνeiðλμ−λνÞteinωmtVðnÞ
μ;ν : ð5Þ

By considering the Fourier decomposition of hVi,

hVi ¼
X
μ;ν;n

jAðnÞ
μ;ν j cosðωðnÞ

μ;νtþ ϕðnÞ
μ;νÞ; ð6Þ

with frequencies ωðnÞ
μ;ν ¼ nωm þ ðλμ − λνÞ, we find that the

Fourier amplitudes

AðnÞ
μ;ν ¼ jAðnÞ

μ;ν j expðiϕðnÞ
μ;νÞ ¼ 2cμ�cνVðnÞ

μ;ν ð7Þ

can be used to extract the dipole matrix elements.
Since in general it might be difficult to directly measure

the operator V, one can rely on system preparation and
readout to separately monitor the overlap of the state with
the eigenstates of V, i.e., PjkiðtÞ ¼ jhkjΨðtÞij2. We can then
analyze the “weighted Rabi” oscillations

PðtÞ ¼
X
k

Vk

V
PjkiðtÞ≡ hVi

V
; with V ¼

X
k

jVkj: ð8Þ

The weighted Rabi oscillations can then be decomposed

into frequency components with amplitudes aðnÞμ;ν ¼ AðnÞ
μ;ν=V,

which can be used to investigate symmetry properties. For
example, consider a two-level system (TLS). The probing
operator V is then a combination of Pauli operators σj
with eigenvectors j0ji, j1ji and normalized eigenvalues
�1. The weighted Rabi oscillations have the form PðtÞ¼
ð1=2Þ½Pj0jiðtÞ−Pj1jiðtÞ�which can be simplified to the typi-
cal Rabi oscillations PðtÞ þ 1=2 ¼ Pj0jiðtÞ, thus clarifying
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the connection of our protocol with typical Rabi
measurements.
In addition to using control of the readout state to

measure Pjki, we can also control the initial state to extract
information about selected dipole matrix elements, by
appropriately choosing the coefficients cμ.
When μ ¼ ν, all bands under the same order (n) are

degenerate with frequency nωm (centerbands), and the
observed Rabi component is their coherent interference

with an amplitude aðnÞ0 ¼ 2
P

μ jcμj2VðnÞ
μ;μ=V. Each band

VðnÞ
μ;μ can also be observed individually by setting the initial

condition jcμj ¼ 1 (this tuning is known as quantum mode
control) [23].
When μ ≠ ν, the off-diagonal dipole matrix elements

VðnÞ
μ;ν can be mapped to the Rabi amplitudes aðnÞμ;ν corre-

sponding to the bands nωm þ ðλμ − λνÞ (sidebands). At the
degeneracy points (e.g., λμ ¼ λν), different sidebands
interfere with each other, inducing phenomena such as
the siT, or more generally the Landau-Zener-Stückelberg
interferometry [42,43] and coherence destruction of tun-
neling (CDT) [27–30].
Results.—To demonstrate the power of combining

modulated driving with weighted Rabi measurements we
characterize symmetries arising in two- and three-level
systems, experimentally realized using NV centers.
NV centers in diamond are atomlike solid-state defects

with a triplet ground state labelled by jms ¼ 0;�1i with
long-coherence time that enables their applications in
quantum information science, including quantum sensing
[44–48] and quantum control [15,22]. To truncate the 3-
level NV center to an effective TLS, we break the
jms ¼ �1i degeneracy by applying an external magnetic
field with strength 239 G, and selectively use the two
ground states jms ¼ 0i and jms ¼ −1i as logical j0i and
j1i [22,23,49]. We simultaneously address an ensemble of
noninteracting NV centers (∼1010 qubits) to increase the
signal-to-noise ratio. An arbitrary waveform generator
(WX1284C) is used to generate the desired waveform
for Hamiltonian engineering.
To engineer strong driving on the NV centers, we rely on

the phase-modulated CCD technique [50], which has been
applied previously to approach the strong-coupling regime
even with limited driving fields [20–22]. As shown in
Fig. 1(a), we apply a phase-modulated waveform

H ¼ ω0

2
σz þ Ω cos

�
ω0tþ

2ϵm
ωm

cosðωmtþ ϕÞ
�
σx; ð9Þ

where ω0 ¼ ð2πÞ2.20 GHz is the qubit frequency, Ω the
microwave driving strength, and ϵm, ωm, ϕ are modu-
lation parameters. In the interaction picture defined by
U ¼ exp f−i(ðω0t=2Þσz þ ϵm½cosðωmtþ ϕÞ=ωm�σz)g, the
Hamiltonian HI ¼ U†HU − U†iðd=dtÞU is

HI ¼
Ω
2
σx þ ϵm sinðωmtþ ϕÞσz: ð10Þ

We thus obtain a time-periodic Hamiltonian HI with
T ¼ 2π=ωm, where Ω and ϵm behave as the static and
driving fields, respectively, and their relative strength can
be easily tuned to approach the strong coupling regime,
without hardware limitations.
The periodic Hamiltonian HIðtÞ in Eq. (10) has two

nontrivial Floquet eigenenergies λ� and the transitions in
the complete Floquet energy structure form Mollow triplets

ωðnÞ
i ¼ nωm þ iðλþ − λ−Þ. Here i ¼ 0, �1 correspond to

the centerbands and sidebands, respectively. These tran-
sitions can be probed either through conventional pump-
probe spectroscopy, such as spontaneous emission [51],
or via projective Rabi measurements in the context of
coherent state evolution [23,33,52], where the Rabi ampli-
tudes can be exactly mapped to the dipole matrix element
(Table I). Under a weak-coupling regime, the Floquet
eigenenergies and eigenstates can also be analytically
obtained in a second rotating frame as shown in
Fig. 1(a). Figures 1(b),1(c) show instances of the Rabi
measurement in time and frequency domains where differ-
ent Mollow bands are separately measured under different
initial conditions.
In the following, we experimentally evaluate the dynami-

cal symmetries of the qubit Hamiltonian HI , and study the
associated spDSs, spDBs, and siT through the intensities of
the Floquet state transitions, which are extracted from Rabi
oscillations.
The first dynamical symmetry is a twofold rotation or

parity symmetry defined by R̂ ¼ σx, which satisfies
R̂HIðtþ T=2ÞR̂† ¼ HIðtÞ. The selection rules are then

given by VðnÞ
μ;ν ∝ ½1þeiπðmμ−mνÞ−iπnαðRÞV �, where μ ∈ fþ;−g,

mμ ∈ f0; 1g, and the constant αðRÞV satisfies R̂†VR̂ ¼ αðRÞV V.

Lab frame
(CCD)

Rotating frame
( )(CCD)

x

z

y

0

2

CCD

2nd rotating frame
(mode control)( )

y

z

x

Ω

2CCD

Initial state

RWA

(mode control)

y

z

x

(a)

(b)

Eigenstate

(c)

sin +

FIG. 1. (a) Sketch of the CCD technique for a TLS. (b) Rabi
oscillations of j0i state under different modulation phases ϕ with
other parameters ðΩ;ωm; ϵmÞ ¼ ð2πÞð3; 3; 0.75Þ MHz. (c) The
FFT spectra of Rabi oscillations in (b).
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For observation operators that anticommute with the
symmetry operator ðV ¼ σy; σzÞ, the Mollow center bands
with even orders and sidebands with odd orders vanish. The
opposite holds for the commuting observation operator
(V ¼ σx). As a result, a series of spDSs and spDBs are
predicted by the parity symmetry.
To experimentally observe these selection rules, we

measure the Rabi oscillations under different modulation
strengths 2ϵm=ωm and plot their Fourier spectrum. In
Figs. 2(a),2(b), the 1st, 3rd, 5th Mollow sidebands, and
2nd, 4th Mollow centerbands have vanishing intensities, as
indicated by dashed lines and labels where nonzero
transition amplitudes would otherwise have been expected.
In Figs. 2(c),2(d), the opposite behavior is observed. These

results validate the theoretical analysis. Note that some
unexpected bands [e.g., odd order centerbands in the range
of 2.5 < 2ϵm=ωm < 5 in Figs. 2(c),2(d)] are still visible,
albeit with small intensities. We attribute their occurrence
to experimental imperfections such as inhomogeneities that
introduce a detuning term in the Hamiltonian HI [22,32].
The second symmetry is a particle-hole symmetry

defined by P̂1 ¼ σz, which satisfies P̂1HIðtþ T=2ÞP̂1
† ¼

−HIðtÞ. The selection rules are then given by

VðnÞ
μ;ν ¼ αðP1Þ

V eiπnVðnÞ
ν0;μ0 , where αðP1Þ

V satisfies P̂1
†VP̂1 ¼

αðP1Þ
V V� [53]. For sidebands, the selection rules are con-

sistent with the parity symmetry predictions as observed in
Figs. 2(a)–2(d). For centerbands, destructive interference is
induced when αðP1Þ

V eiπn ¼ −1 and the initial state is
an equal superposition of two eigenstates such that

VðnÞ
þ;þ þ VðnÞ

−;− ¼ 0. This property gives rise to vanishing
centerbands in the quantum mode control as shown in
Fig. 1(c) and Ref. [23]. For a modulation phase ϕ ¼ 0, the
Floquet eigenstates are in the x − y plane of the Bloch
sphere such that jc�j2 ¼ 1=2 for the initial state j0i, and the
destructive interference transpires in the odd (even) center-
band when V ¼ σz (V ¼ σx). Combining with the parity
symmetry that makes the opposite orders of centerband
vanish, all centerbands vanish under ϕ ¼ 0 as observed in
Figs. 2(a),2(c). Instead, under the modulation phase

TABLE I. Correspondence between the Rabi amplitudes aðnÞi

and dipole matrix element VðnÞ
μ;ν for a TLS. Note that

Φμ
p;0j

¼ h0jjΦμ
pi, and listed cases do not include i ¼ n ¼ 0

[23,32].

Bandsfi;ng Rabi amplitudes aðnÞμ;ν Expressed in VðnÞ
μ;ν

f0; ng 2
P

� jc�j2 Pk Φ��
kþn;0j

Φ�
k;0j jcþj2VðnÞ

þ;þ þ jc−j2VðnÞ
−;−

f−1; ng 2
P

k c
þc−�Φþ

k;0j
Φ−�

kþn;0j cþc−�VðnÞ
−;þ

fþ1; ng 2
P

k c
þ�c−Φþ�

kþn;0j
Φ−

k;0j cþ�c−VðnÞ
þ;−

On-resonance (
m

= )

V=
z
, =0
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1

2
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6

7

f/
m

spDSs
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m

= )

V=
z
, = /2
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2

m
/

m

1
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7

f/
m

spDSs
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m

= )

V=
x
, =0
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7
spDSs
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m

= )

V=
x
, = /2
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2

m
/

m
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3

4

5

6

7
spDSs

Symmetry breaking

V=
x
, =0
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1

2

3

4

5

6

7
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m

=10 )

V=
x
, =0
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2

m
/

m

1
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4

0

0.5

1
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2

2.5

3
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4
10-3

spDSs

(a) (c) (e)

(d)(b) (f)

siT (CDT) aDS

1
(3)

1
(5)

1
(1)

0
(4)

0
(2)

1
(4)

1
(2)

+1
(0)

0
(5)

0
(3)

0
(1)

re-emergence of spDSs

1
(2)

FIG. 2. Experimental observation of spDSs, spDBs, and siT. (a)–(d) Observation of spDSs, spDBs under resonant modulation
ωm ¼ Ω ¼ ð2πÞ3 MHz. The initial state is j0i, and we measure generalized Rabi oscillations Pj0iðtÞ or PjþiðtÞ under different
modulation strength 2ϵm=ωm, from 0 to 4 μs with 401 sampling points (see Fig. 1.) The plots are the Fourier spectrum of the Rabi
measurements for specified modulation phases ϕ and probe operator V. In (a) the odd sidebands vanish (spDSs, marked by dashed lines
and labels). Similarly, we observe vanishing even (b) and odd (d) centerbands. The even sidebands vanish in (c), but they reemerge in
(e) (arrows and dotted lines), due to symmetry breaking induced by adding a perturbation, H0 ¼ 0.2ϵm sinð2ωmtÞσz to the periodic
Hamiltonian. (f) Observations of siT, spDSs, spDBs and accidental dark states (aDS) under off-resonant modulation ωm, 10Ω ¼
ð2πÞ15 MHz (labels indicate the revealing features). Rabi oscillations PjþiðtÞ of an initial state j0i are measured from 0 to 2 μs with 401
sampling points.

PHYSICAL REVIEW LETTERS 127, 140604 (2021)

140604-4



ϕ ¼ π=2, the Floquet eigenstates are in the x − z plane and
the condition jc�j2 ¼ 1=2 is not always satisfied.
The symmetry-allowed centerbands appear as shown in
Figs. 2(b),2(d) and vanish at 2ϵm=ωm ≈ 4, where jc�j2 ¼
1=2 is accidentally satisfied.
To further demonstrate the symmetry-protected selection

rules, we break both the parity and particle-hole symmetries
by introducing an additional term 0.2ϵm sinð2ωmtÞσz in the
Hamiltonian HI, and measure the Rabi spectrum in
Fig. 2(e), where we see the emergence of all sidebands
[odd allowed sidebands as in Fig. 2(c) and symmetry-
breaking even sidebands.]
Another type of destructive interference, siT, is observ-

able when sidebands interfere destructively at degeneracy
points, which requires two discrete particle-hole sym-
metries in the system. In the strong coupling and far off-
resonance regime (Ω ≪ ϵm, ωm), an additional particle-
hole symmetry P̂2 ¼ I arises such that IHIðtþ T=2ÞI ¼
−HIðtÞ, which results in a relation between two side-

bands VðnÞ
þ;− ¼ α

ðP�
1
Þ

V eiπnVðnÞ
−;þ with α

ðP�
1
Þ

V given by α
ðP�

1
Þ

V V ¼
P̂1

†�VP̂1
�. Under the initial condition cþc−� ¼ cþ�c−, the

siT happens when α
ðP�

1
Þ

V eiπn ¼ −1, and the qubit evolution
is suppressed in the direction of the driving field (the CDT
effect, which has been observed before both numerically
[29] and experimentally [30].) In Fig. 2(f), we engineer a
strong-coupling Hamiltonian and measure the Rabi spec-
trum. The siT is observed when two sidebands are
degenerate at 2ϵm=ωm ¼ 2.4048 (see Supplemental
Material for a constructive interference [32]). In addition,
spDSs are also observed as in Fig. 2(c).
In order to demonstrate that our technique can be

extended beyond TLSs, we show how to use the 3 levels
associated with the spin-1 of NV centers to explore a
threefold rotation symmetry. We use modulated driving to
both reach the strong driving regime and to engineer
the double quantum (DQ) transition (jmS ¼ −1i ↔
jmS ¼ þ1i) in the rotating frame. Indeed, the DQ transition
cannot be directly generated by microwave driving
(although it could be achieved by mechanical oscillations

]54,55 ].) Here we overcome this limitation by simulta-
neously applying two modulated driving on the single
quantum transitions (jmS ¼ 0i ↔ jmS ¼ �1i), leading to
the rotating-frame Hamiltonian [32]

H3
I ðtÞ ¼ J½cosðωmtÞj− 1ihþ1jþ cosðωmtþ 2π=3Þjþ 1ih0j

þ cosðωmtþ 4π=3Þj− 1ih0j þH:c:� ð11Þ

with a threefold rotation symmetry R̂H3
I ðtþ T=3ÞR̂† ¼

HIðtÞ, where the rotation R̂ ¼ j − 1ih0j þ j0ihþ1j þ jþ
1ih−1j. We find symmetry-protected selections rules by
evaluating the Floquet eigenstates and the observation
operator [32]. In Fig. 3, we simulate the Fourier spectrum
of the weighted Rabi signal for the probe operator
V ¼ j0ihþ1jþ j0ih−1jþ jþ 1ih−1j þH:c:, which clearly

displays the expected spDSs, protected by the threefold
rotation symmetry.
Discussions and conclusion.—By combining modulated

driving and detection via Rabi oscillations, we are able to
experimentally observe selection rules protected by
dynamical symmetries in a periodically driven solid-state
system. The modulated driving scheme is instrumental to
reach the strong light-matter coupling regime used to reveal
high-order Floquet bands; it also introduces additional
flexibility in quantum control, enabling one to engineer
transitions forbidden in the unmodulated frame and reveal
details of the dynamics (e.g., Mollow triplets) via mode
control. Direct measurement of the dipolar transition
operator V, or indirectly via weighted Rabi oscillations
is a more efficient strategy than previous pump-probe
methods in the highly coherent quantum systems that
can now be routinely engineered. In virtue of these
techniques, we characterized the time-domain parity and
particle-hole symmetries as well as the CDT effect in the
engineered system. In the context of quantum control, the
dynamical symmetries studied here have applications in
inducing selections rules for higher harmonic generation
and driving quantum synchronization [56–59].
While we showed simulations and experiments for two-

and three-level systems, the experimental techniques we
introduced can be generalized to many-body (N-level)
systems in a broad set of platforms beyond spins, such
as cold atoms and superconducting circuits.
When combined with spatial symmetries, dynamical

symmetries characterized in this work can lead to novel
Floquet topological phases such as Floquet topological
insulators and superconductors [10]. The breaking of these
dynamical symmetries might lead to intriguing dynamical
phase transitions. Furthermore, by engineering of the
dissipation such as tuning the decoherence rate of the

0 1 2 3 4 5 6

2J/ m
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4

5

6

f/
m

0
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0.1
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0.2

spDS in the 2nd manifold

1,2
(2)

1,3
(2)

3,1
(2)

3,2
(2)

FIG. 3. Simulation of spDSs and spDBs in a three-level system
(vanishing intensities marked by the dashed lines). The initial
state is ð1= ffiffiffi

3
p Þðje1i þ je2i þ je3iÞ where je1;2;3i are eigenstates

of V, such that evolution mode involves all bands. The weighted
Rabi PðtÞ ¼ ð1=4Þ½2Pje1iðtÞ − Pje2iðtÞ − Pje3iðtÞ� is simulated
from 0 to 40 μs with 5001 sampling points and the modulation
frequency is 0.3 MHz.
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system, the work here paves the way towards further
exploration of non-Hermitian Floquet Hamiltonians.
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