
Factoring 2048-bit RSA Integers in 177 Days with 13 436 Qubits
and a Multimode Memory

Élie Gouzien * and Nicolas Sangouard †
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We analyze the performance of a quantum computer architecture combining a small processor and a
storage unit. By focusing on integer factorization, we show a reduction by several orders of magnitude of
the number of processing qubits compared with a standard architecture using a planar grid of qubits with
nearest-neighbor connectivity. This is achieved by taking advantage of a temporally and spatially
multiplexed memory to store the qubit states between processing steps. Concretely, for a characteristic
physical gate error rate of 10−3, a processor cycle time of 1 microsecond, factoring a 2 048-bit RSA integer
is shown to be possible in 177 days with 3D gauge color codes assuming a threshold of 0.75% with a
processor made with 13 436 physical qubits and a memory that can store 28 million spatial modes and 45
temporal modes with 2 hours’ storage time. By inserting additional error-correction steps, storage times of
1 second are shown to be sufficient at the cost of increasing the run-time by about 23%. Shorter run-times
(and storage times) are achievable by increasing the number of qubits in the processing unit. We suggest
realizing such an architecture using a microwave interface between a processor made with superconducting
qubits and a multiplexed memory using the principle of photon echo in solids doped with rare-earth ions.
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Introduction.—Superconducting qubits form building
blocks of one of the most advanced platforms for realizing
quantum computers [1,2]. The standard architecture consists
of laying superconducting qubits in a 2D grid and computing
using only neighboring interactions. Recent estimations
showed however that fault-tolerant realizations of various
quantum algorithms with this architecture would require
millions of physical qubits [3–5]. These performance analy-
ses naturally raise the question of an architecture better
exploiting the potential of superconducting qubits.
In developing a quantum architecture we have much

to learn from classical architectures. Realizations using
trapped ions for example combine processing with storage
units [6]. The authors of Ref. [7] realized that key quantum
algorithms are mostly sequential meaning that we may only
need a small computing block for all the qubits in the
storage unit in this architecture. Ongoing experimental
efforts aim at exploiting this idea to reduce the number of
superconducting qubits in the standard approach to quan-
tum computing by adding a quantum memory implemented
with spins or atoms [8–10]. A detailed analysis of the
performance of this hybrid architecture is however missing.
We here report on such an analysis by considering a

quantum memory that can store multiple spatial transverse
and temporal modes. The memory can be thought of as a
qubit register in which the address of each qubit is
identified by a temporal and a spatial index. When a given
qubit needs to be processed, its state is released and mapped
into the processor by means of a microwave field in a

temporal and spatial mode corresponding to the qubit
address. When the processing is done, the qubit state is
mapped back to the memory and stored until another
processing operation is needed.
More precisely, we use 3D error-correction codes [11] in

which the address of each (dressed) logical qubit is encoded
into a 3D structure of physical addresses, two dimensions
being encoded in space and one in time (see Fig. 1). Error-
correction and logical gates are applied by sequentially
releasing physical qubits corresponding to different “hori-
zontal” slices (with different temporal indexes) and by
processing each slice (with the same temporal indexes)
simultaneously.
We assess the performance of this architecture through a

version of Shor’s algorithm [12] proposed by Ekerå and
Håstad [13]. The algorithm is a threat for widely used
cryptosystems based either on the factorization [14] or the
discrete logarithm problem [15,16]. It can also be consid-
ered as a certification tool to check the proper functioning
of an actual quantum computer as its outcome can be
verified efficiently. Last but not least, the cost of its
implementation has been evaluated using plausible physi-
cal assumptions for a large scale processor with a standard
2D grid of superconducting qubits (a characteristic physical
gate error rate of 10−3, a surface code cycle time of 1 μs,
and a reaction time of 10 μs): it was estimated that it should
be possible to factor a 2048-bit integer, typically used in the
Rivest–Shamir–Adleman (RSA) cryptosystem, in 8 hours
with 20 million qubits [3].
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By taking this estimation as a reference, we estimate the
cost of implementing the same version of Shor’s algorithm
in terms of physical processing qubit number, multimode
capacity, memory storage time, and run-time. Our evalu-
ation is given in the case where the processor is made with
two (dressed) logical qubit slices. Under the assumptions
used in Ref. [3] for the gate error rate and the cycle time, we
show that it should be possible to factor a 2 048-bit RSA
integer in 177 days using a multimode memory with a
storage time of about 2 hours and a processor including 13
436 physical qubits—a reduction by more than 3 orders of
magnitude of the number of physical qubits, as compared to
the standard architecture without memory [3], at the cost of
a ≈500 times longer run-time. By inserting additional error-
correction steps, we show that the storage time can be
significantly reduced at the cost of a slight increase of run-
time. We also explain how shorter run-times and storage
times are achievable at the cost of increasing the number of
qubits in the processing unit. We propose a realization of
such an architecture using a microwave interface between a
processor made with superconducting qubits and a multi-
plexed memory using the principle of photon echo in solids
doped with rare-earth ions embedded in cavities.
Principles of (a variant of) Shor’s algorithm.—Consider

the factorization of N ¼ p × q, the product of two prime
numbers of similar sizes, p and q. We note n the number of
bits involved in the binary representation of N, that is
2n−1 ≤ N < 2n. While no efficient classical factorization
algorithm is known, Shor’s algorithm and its variants factor
N with a polynomial complexity into n [12,13,17–20].
The version of Shor’s factorization algorithm proposed

by Ekerå and Håstad [13] starts by randomly selecting an
integer g in the multiplicative group of integers modulo N,

Z�
N , and defining h ¼ gðN−1Þ=2. As the order of Z�

N is
ϕðNÞ ¼ ðp − 1Þðq − 1Þ, we have h ¼ gðpq−p−qþ1Þ=2×
gðpþq−2Þ=2 ≡ gðpþq−2Þ=2 mod N where the last equivalence
is the result of the Chinese remainder theorem. Under
the assumption that the order r of g (the smallest
non-negative integer such that gr ≡ 1 mod N) satisfies
r > ðpþ q − 2Þ=2, computing the discrete logarithm of
h modulo N, as detailed later, yields l ¼ ðpþ q − 2Þ=2.
For large N, the assumption is verified with a high
probability [13]. Using N ¼ pq and l ¼ ðpþ q − 2Þ=2,
where N and l are both known, p and q are recovered by
choosing one solution of the equation N ¼ pð2lþ 2 − pÞ,
and then exploiting q ¼ 2lþ 2 − p.
The discrete logarithm is computed in three steps. First,

the exponentiation ðe1; e2Þ → ge1h−e2 is applied once on
two quantum registers prepared in a superposition of every
possible value of e1 and e2, respectively. Two quantum
Fourier transforms are then applied independently to the
two registers before being measured. Finally, a classical
postprocessing extracts the discrete logarithm l of h
modulo N from the measurement results. Because the
measurements are performed directly after the Fourier
transform, the cost of exponentiation largely dominates
the cost of Ekerå and Håstad’s algorithm (see Supplemental
Material [21], Sec. A).
Number of gates.—The modular exponentiation needed

in Ekerå and Håstad’s algorithm, i.e., the operation
jeij1i ↦ jeijge mod Ni, with the input e and the output
ge mod N encoded on ne and n bits, respectively, can be
decomposed into ne multiplications, each being decom-
posed into 2n controlled additions of integers of typical
size n and one controlled swap between two registers of
size n, giving a total number of 2nen (ne) controlled
additions (swaps between registers, respectively) (see the
Supplemental Material [21], Sec. B for details). Each
modular addition is obtained with a standard adder circuit
at the cost of a specific representation—the coset repre-
sentation (see the Supplemental Material [21], Sec. C)—
adding m additional qubits to the register. A controlled
swap operation between two qubits can be performed using
two controlled NOTs (CNOTs) and one Toffoli gate.
Hence, the total cost for controlled swaps operating on
two registers using nþm qubits is of 2ðnþmÞ CNOTs
and nþm Toffoli gates (see the Supplemental Material
[21], Sec. B). For the controlled addition, we can use a
semiclassical adder whose mean cost for integers of size
nþm is of 5.5ðnþmÞ − 9 CNOTs and 2ðnþmÞ − 1
Toffoli gates (see the Supplemental Material [21], Sec. B).
Given the number of gates in controlled addition and swap
operations, the number of additions and swaps in the
multiplication, and the number of multiplications in the
modular exponentiation, the cost of factorization can easily
be estimated (see the Supplemental Material [21], Sec. B).
This cost can however be reduced using windowed arith-
metic circuits [44]. The basic idea consists of grouping the

FIG. 1. Quantum computer architecture using a processor made
with a 2D grid of qubits and a memory operating as a qubit
register where the address of each qubit is specified by a temporal
and spatial index. Only (dressed) logical qubits are represented;
additional ancillary qubits are used for measuring the operators
for error correction.
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bits of e by blocks (each including we bits) for controlling
each multiplication, hence reducing the number of these
multiplications. Similarly, for each multiplication input
bits are grouped (in blocks including wm bits) to reduce
the number of additions composing it. As detailed in the
Supplemental Material [21], Sec. D, the cost of exponen-
tiation is dominated in this case by 2½neðnþmÞn=ðwewmÞ�
1-qubit gates, ½2weþwmnþ 12ðnþmÞ�½neðnþmÞ=ðwewmÞ�
CNOTs, and 4½neðnþmÞ2=ðwewmÞ� Toffoli gates. We
emphasize that this is a first order estimation. In the code
used to compute the required resources and find optimal
parameters, the complete formulae have been used [45].
Error correction.—The error correction is achieved

using 3D gauge color codes, a family of subsystem
codes [11]. A first code admits a transversal implementa-
tion of CNOT and Hadamard gates while a second code
accepts a transversal implementation of the non-Clifford
T gate. Switching between the two codes gives a universal
set of gates without the need for state distillation [46],
contrary to standard ways of operating the surface
code [47].
The two codes are based on a shared geometrical

structure: a large tetrahedron constructed from elemen-
tary tetrahedrons (see the Supplemental Material [21],
Sec. E for details). A physical qubit is attributed to each
elementary tetrahedron. As in any subsystem codes, the
stabilized subspace is split into a tensorial product of the
(bare) logical and gauge qubits (the dressed logical qubit
includes the bare logical qubit and gauge qubits). A set of
operators—generators of gauge operators—are measured,
each being the product of (up to six) X (or Z) operators
associated to qubits corresponding to tetrahedrons sharing
the same edge. From these measurements, the values of
stabilizers of the two codes are deduced. In the code used
for implementing H and CNOT gates, the stabilizers are
defined from the vertices, i.e., the product of X (or Z)
operators associated to qubits corresponding to tetrahe-
drons sharing the same vertex. In the code used for
implementing T gates, the stabilizers are defined from
the vertices for X operators and from the edges for Z
operators. The value of an operator represented by a vertex
is classically recovered by multiplying the measurement
results of combinations of specific edges ending at the
given vertex. Several combinations are possible giving
redundancies that can be exploited to achieve fault-tolerant
error correction with only one run of measurements [48].
The structure of codes in which the stabilized subsystem is
the tensor product of the gauge and (bare) logical sub-
systems guarantees that measurements of gauge operators
do not reveal the value of the (bare) logical qubit (see the
Supplemental Material [21], Sec. E).
To account for the additional resource needed to

implement these codes, we use an estimation of the residual
error probability on one logical qubit given in [ [49],
Eq. (4)]

plogical ¼ A exp

�
α log

�
p
pth

�
dβ
�

ð1Þ

where A ≈ 0.033, α ≈ 0.516, β ≈ 0.822, p is the error
probability per physical qubit, d the code distance which
is related to the number of physical qubits per logical qubits
(see below) and pth the fault-tolerance threshold. While the
circuit-level threshold is unknown, we choose pth ¼ 0.75%
as a working hypothesis and give in the Supplemental
Material [21], Sec. E4, the run-time and the resource as a
function of the code threshold.
Architecture.—For simplicity, the tetrahedral structure of

the error correction (see the Supplemental Material [21],
Sec. E) can be included into a large cube in which physical
qubits are now represented by elementary cubes (see
Fig. 1). The large cubes are stored into the memory and
loaded by slices into the processor when they need to be
processed. We size the processor such that one slice of two
large cubes can be loaded simultaneously, which is con-
venient to perform 2-qubit gates efficiently. Each gate is
immediately followed by an error-correction round on the
processed qubits. This is done by reloading again each slice
sequentially in the processor and by measuring the gauge
generators (before recovering classically the code stabiliz-
ers), each of them using up to six 2-qubit gates, one
auxiliary qubit and one measurement of this auxiliary
[46,50]. Note that the codes of interest are 3D local, and
the auxiliary qubits only need to keep coherence for the
time of loading and measuring two successive slices for
successfully performing a stabilizer measurement. Once
the syndromes are obtained and the errors are detected, the
correction of these errors is delayed and merged with
the next operation applied on the qubit to be corrected.
Further note that all-to-all connectivity between the logical
qubits is achieved if each physical address in the memory
can be mapped to three physical qubits in the processor:
two for the 2-qubit gates (depending on whether the
physical qubit is the logical control or target qubits)
and one for the error correction. For achieving a code
distance d the number of physical qubits in the processor is
nqubits ¼ 2 × 2 × ½ð3d2 þ 2d − 3Þ=2�, corresponding to two
logical qubit slices (see the Supplemental Material [21],
Sec. E) and including the ancillary qubits (essentially one
per physical qubit) needed for stabilizer measurements. For
a code distance d, we approximate the time it takes
to perform one (1-qubit or 2-qubit) logical gate by 2ðd −
2Þtc where tc is the cycle time of the 2D processor (time to
load one qubit slice; to measure the stabilizers, which is
longer than the gate operation; and to reload the slice into
the memory) and the factor 2 comes from the fact that the
gate is immediately followed by an error-correction round.
Cost evaluation.—To evaluate the resources required for

integer factorization, we consider the total number of gates
involved in the logical circuit. The total run-time for one
attempt is obtained by multiplying the gate number by
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the time it takes to perform one gate, while the success
probability is deduced from the logical error probability
[Eq. (1)]. Following Ref. [3], we consider a cycle time of
tc ¼ 1 μs and a mean error per physical qubit and per
gate of p ¼ 10−3. Note that the mean error per gate now
includes errors during reading of and writing into the
memory.
The cost evaluation is finally obtained by optimizing the

two window parameters wm and we, the coset representa-
tion padding m, and the code distance d in order to
minimize the volume texp × nqubits. texp ¼ t=ps is the
average time to obtain the result (several attempts might
be necessary), with t the computation time per attempt and
ps the success probability.
Results.—The required resources to factor a n-bit RSA

integer are presented in Figure 2 and discussed in the
Supplemental Material [21], Sec. F. Our estimation sug-
gests that the factorization of a 2 048-bit integer corre-
sponding to the most common RSA key size would be
possible in about 177 days with a processor having only
13 436 qubits. Concerning the memory, we made the
hypothesis of an error per cycle of p ¼ 10−3, including
the reading and writing error. As previously discussed, we
need a memory for which each mode can be mapped to
three different qubits of the processor. We estimated the
maximum time between storage and readout of the same
qubit to be less than 2 hours. A memory with a storage time
of at least 2 hours is however not necessary as error-
correction steps can be implemented periodically at the cost
of increasing the run-time. Error correction of all the qubits
stored in the memory is estimated to take 186 ms with a
processor having 13 436 bits, meaning that the storage time
simply needs to be longer than 186 ms. Applying a
correction every second for example would increase the
run-time by about 23%. Note also that both the run-time
and storage time can be reduced by increasing the size of
the processor (see the Supplemental Material [21], Sec. F).
We also estimated that 28 million spatial modes and 45

temporal modes need to be stored. Note that the number of
stored modes does not enter in the volume and is thus not
optimized (see the Supplemental Material [21], Sec. G).
Note also that qubit addresses in the memory can be
identified by temporal indexes only at the cost of longer
run-time when photon-echo type protocols are used, cf.,
below for a concrete example.
Implementation.—Our proposal provides a viable sol-

ution to get rid of the individual control of millions of
qubits but the challenge now relies on the realization
of an efficient multimode quantum memory. As shown
in Ref. [51], such a memory could be implemented using a
solid-state spin ensemble (N̄ spins with an inhomogeneous
spectral broadening Γ), resonantly coupled (with single
spin coupling rate g) to a frequency tunable single-mode
microwave resonator (of length L and with damping
rate κ to an external transmission line). The resonator
serves to enhance microwave absorption and re-emission
by the spins. In particular, unit efficiency absorption of a
microwave field can be realized if the finesse F of the
resonator matches the single-path absorption αL of spins
F ¼ ðαLÞ−1, i.e., if the cooperativity C ¼ g2N̄=ðκΓÞ ¼
αL × F ¼ 1 [52]. Once absorbed, the microwave field can
be re-emitted by time reversing the inhomogeneous dephas-
ing using a spin echo technique [53]. Detuning the
resonator off and on resonance at the right time, the spin
coherence is recovered, leading to a noise-free, unit re-
emission probability of the stored photon if C ¼ 1 [51]. In
the regime κ ≫ g

ffiffiffiffi
N̄

p
≫ Γ, the memory bandwidth is given

by 4Γ [51], meaning that any input with a spectrum, say, 10
times thinner i.e., 4Γ=10 can be stored with close to unit
efficiency. Furthermore, the time duration during which an
optical coherence can be preserved is limited by the inverse
of the homogeneous linewidth γh [51]. Assuming that
the storage efficiency is unchanged if the storage time is
100 times shorter than γ−1h , this means that the number of
temporal modes that can be stored with almost unit
efficiencies is roughly given by Γ=ð250γhÞ. Interestingly,
a well-identified temporal mode can be released while
keeping all the other modes in the memory by appropriately
detuning the resonator off and on resonance with the spins
at the cost of introducing a dead time between two readouts
of half the duration of the stored train of pulses on average.
To give an idea of what could be realized in the near

future, we estimate that it should be possible to factor 35 in
about 1 min using the exact algorithm presented here (with
windowed arithmetic and 3D color codes) and a setup
combining a memory for storing 38 logical qubits (3 002
spatial modes and 5 temporal modes) and a processor with
316 physical qubits (we estimate that more than 60 000
qubits would be needed with a standard 2D grid and surface
code). If instead of using a spatially and temporally
multiplexed memory, the qubits are stored in the same
spatial mode and are identified by (6650) temporal
addresses only, we evaluate the same factorization to be

FIG. 2. Number of qubits in the processor and run-time to
factor n-bit RSA integers with a computer architecture using a
multimode memory.
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possible in about 1 day using a memory bandwidth 4Γ ¼
2π × 48 MHz and taking into account the corresponding
dead time between two memory readouts. In this case,
error correction of all the qubits stored in the memory is
estimated to take 132 ms meaning the storage time needs
to be longer than 132 ms. For a memory bandwidth
4Γ ¼ 2π × 120 MHz, the same factorization would take
9 hours, and error correction is estimated to take 53 ms. As
discussed in the Supplemental Material [21], Sec. H, these
requirements can realistically be met with a realization of
the memory protocol described before combining a solid
doped with rare-earth and a superconducting microwave
resonator [54–56].
Conclusion.—We have shown that the use of a quantum

memory for quantum computing is appealing as unproc-
essed qubits can be loaded into the memory which
significantly reduces the size of the processor compared
with standard architectures where all qubits are kept in the
processor. All-to-all connectivity between logical qubits is
reached if each address in the memory can be mapped to
only 3 qubits in the processor. The use of a memory allows
one to exploit a 3D code on a 2D processor. If we allow
each memory mode to be mapped to any qubit in the
processor, all-to-all connectivity between physical qubits
can be obtained, hence offering many opportunities for
error correction and for implementing algorithms with
gates operating between non-neighboring qubits.
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