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Multipartite entanglement is an essential resource for quantum communication, quantum computing,
quantum sensing, and quantum networks. The utility of a quantum state jψi for these applications is often
directly related to the degree or type of entanglement present in jψi. Therefore, efficiently quantifying and
characterizing multipartite entanglement is of paramount importance. In this work, we introduce a family of
multipartite entanglement measures, called concentratable entanglements. Several well-known entangle-
ment measures are recovered as special cases of our family of measures, and hence we provide a general
framework for quantifying multipartite entanglement. We prove that the entire family does not increase, on
average, under local operations and classical communications. We also provide an operational meaning for
these measures in terms of probabilistic concentration of entanglement into Bell pairs. Finally, we show that
these quantities can be efficiently estimated on a quantum computer by implementing a parallelized SWAP
test, opening up a research direction for measuring multipartite entanglement on quantum devices.
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Introduction.—The presence of entanglement in quan-
tum states is widely recognized as one of, if not the,
defining property of quantum mechanics [1]. Since the
development of quantum information theory [2,3] it was
realized that entanglement is a fundamental resource [4,5]
for quantum communications [6–9], quantum cryptography
[10,11], and quantum computing [12–14]. Recent advances
in quantum control technologies have made it possible to
harness the power of entanglement for quantum-enhanced
sensing [15–17] and communications [18–20], and for
showing quantum advantage using near-term quantum
computers [21]. While the ubiquity of entangled quantum
states as a resource is clear, their utility for these applica-
tions often depends on the degree of entanglement in the
quantum state.
The nature of quantum entanglement is well understood

for bipartite pure quantum states [2,13,22]. However, the
same cannot be said for the multipartite entanglement of
pure states [23], where the complexity of entanglement
scales exponentially with the number of parties. In fact,
already for a system of 3 qubits there exist two different,
and inequivalent, types of genuine tripartite entanglement,
such that states of the two different kinds cannot be exactly
transformed onto the other via the action of local operations
and classical communications (LOCC) [24]. While the
study of multipartite entanglement has received consider-
able attention [25–33], there does not exist a single
unambiguous way to detect, quantify, and characterize

multipartite entanglement. Hence, improving our knowl-
edge on the nature of the entanglement between multiple
parties is not only crucial to better understanding the
underlying structure of quantum mechanics, but it is also
a fundamental step toward enhancing emergent technolo-
gies such as distributed quantum sensing [34], longer
baseline telescopes [35], and various quantum Internet
applications [36–38].
The advent of quantum computing technologies brings

forth the possibility of verifying and characterizing the
multipartite entanglement present in states prepared on
these near-term quantum devices. In this context, entangle-
ment measures that are not only theoretically relevant, but
that can also be estimated via quantum algorithms [31,
39–44], become particularly attractive as characterization
tools. For instance, it was shown [29,45] that given an
n-qubit state jψi, the linear entropies 1

2
ð1 − Trρ2jÞ of the

single-qubit reduced states ρj can be used to study the
entanglement in jψi. Moreover, since the SWAP test
[46–50] can be used to compute linear entropies, these
measures can be efficiently estimated on quantum com-
puters or optical quantum devices.
In this work, we introduce a family of quantities, called

concentratable entanglements, which characterize and
quantify the multipartite entanglement in an arbitrary n-
qubit pure state jψi. We first prove that each concentratable
entanglement does not increase, on average, under LOCC
operations, and hence forms an entanglement monotone.
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Then, we show that by combining concentratable entan-
glements one can obtain several quantities of interest,
which can quantify properties such as the entanglement
in, and between, subsystems, as well as the total entangle-
ment in jψi. We then discuss how these quantities can be
efficiently estimated on a quantum computer given two
copies of jψi, and employing constant-depth n-qubit
parallelized SWAP tests. Finally, we discuss the operational
meaning of the concentratable entanglement as the prob-
ability of obtaining Bell pairs between qubits in the
different copies of jψi.
Our results generalize previous results in the literature in

the sense that (i) several entanglement measures correspond
to a special case of the concentratable entanglements
[28,29,32,45,51] and (ii) we prove a conjecture in
Ref. [42], where it was hypothesized that the parallelized
SWAP test can provide the basis for constructing a pure
state multipartite entanglement monotone. Finally, the
broader implication of our work is to promote a research
direction of studying multipartite entanglement using
quantum devices, such as cloud-based quantum computers.
Concentratable entanglement.—Consider an n-qubit

pure quantum state jψi. We denote S ¼ f1; 2;…; ng as
the set of labels for each qubit, and PðSÞ as its power set
(i.e., the set of subsets, with cardinality jSj ¼ 2n). We
introduce the concentratable entanglements as a family of
entanglement monotones that characterize and quantify the
multipartite entanglement in jψi.
Definition 1.—For any set of qubit labels s ∈ PðSÞnf=0g,

the concentratable entanglement is defined as

CjψiðsÞ ¼ 1 −
1

2cðsÞ
X

α∈PðsÞ
Trρ2α; ð1Þ

where cðsÞ is the cardinality of the set s, and PðsÞ its power
set. Here we denote by ρα the joint reduced state, associated
to jψi, of the subsystems labeled by the elements in α (with
α ¼ =0 leading to ρα ≔ 1).
Equation (1) shows that each CjψiðsÞ is the average

of the entanglement between the subsets of qubits with
labels in s and the rest of the system. This means that
different concentratable entanglements can measure both
bipartite and multipartite entanglements according
to how s is defined. For instance taking the smallest
set possible, i.e., s ¼ fjg with j ¼ 1;…; n, one finds
CjψiðfjgÞ ¼ 1

2
ð1 − Trρ2jÞ. Thus, when averaged over fjg,

one recovers the measures in [29,45] which quantify the
bipartite entanglement between the jth qubit and the rest.
On the other hand, taking the largest set possible, i.e.,
s ¼ S, CjψiðSÞ quantifies the overall entanglement in jψi
across all cuts, and as discussed below, this case corre-
sponds to the entanglement measure conjectured in [42].
Moreover, in this case we also recover the entanglement
measure of [51] as a special case of the concentratable
entanglements. Including these extremal cases, there are a

total of 2n − 1 concentratable entanglements according to
Definition 1.
Efficient Computation.—A fundamental aspect of the

concentratable entanglements is that they can be efficiently
estimated on a quantum computer. While each purity,
Tr½ρ2α�, in Eq. (1) can be computed via an overlap test
[49], one can also use two copies of the state jψi and n
ancilla qubits to employ the n-qubit parallelized SWAP test
depicted in Fig. 1 (see Supplemental Material [52] for a
discussion on the SWAP test). From Fig. 1, it is clear that
the kth ancilla qubit is used to perform a controlled SWAP
test on the kth qubit of each copy of jψi. The tests are
independent and thus factorizable. This implies that the
n-qubit parallelized SWAP test has a constant circuit depth
for any number of qubits.
Given the n-qubit parallelized SWAP test, we define the

following relevant quantities. First, let pðzÞ be the prob-
ability of measuring the z bitstring on the n control qubits,
and let Z ¼ f0; 1gn be the set of all such bitstrings. Then,
the following proposition (proved in the Supplemental
Material [52]) holds.
Proposition 1.—The concentratable entanglement can

be computed from the outcomes of the n-qubit parallelized
SWAP test as

CjψiðsÞ ¼ 1 −
X

z∈Z0ðsÞ
pðzÞ; ð2Þ

whereZ0ðsÞ is the set of all bitstrings with 0’s on all indices
in s.
Proposition 1 shows that CjψiðsÞ can be computed by

performing the parallelized SWAP test on all qubits and
adding the probabilities where the control qubits with
indices in s are measured in the j0i state. Since this
corresponds to a conditional probability, one can also

FIG. 1. Circuit for the n-qubit parallelized SWAP test. Given
two copies of the quantum state jψiand n ancilla qubits, the n-
qubit parallelized SWAP test consists of employing the kth ancilla
to perform a controlled swap test on the kth qubit of each copy of
jψi. Since the n SWAP test can be factorized, one can perform
them in parallel, leading to a constant-depth circuit.
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perform SWAP tests only on the qubits with indexes
in s [requiring just cðsÞ ancillary qubits] and express the
concentratable entanglement as CjψiðsÞ ¼ 1 − pð0xÞ. Here
pð0xÞ ¼

P
z∈Z0ðsÞ pðzÞ denotes the probability of obtaining

the all-zero result from the SWAP test on the qubits with
labels in s.
Here we remark that Eqs. (1) and (2) are complimentary

in the sense that the number of terms in the summations are
inversely proportional. That is, the summation in Eq. (1)
contains 2cðsÞ terms, while that of Eq. (2) contains 2n−cðsÞ
terms. Hence, we remark that it is preferable to employ
Eq. (2) when analyzing multipartite entanglement, as this
avoids potentially having to compute a prohibitively large
number of purities as those required in other entanglement
measures [59]. For instance, if ½n − cðsÞ� ∈ O½logðnÞ� then
Eq. (2) only contains the number of terms in O½polyðnÞ�.
For the purpose of analyzing multipartite entanglement we
henceforth focus on Eq. (2).
Finally, we remark, that, as shown in the Supplemental

Material [52], the SWAP test still works when the two
copies of jψi are not exactly the same. Specifically, let jψi
and jψ 0i be two faulty copies of the state with
kjψihψ j − jψ 0ihψ 0jk1⩽ε; then, we find that the error in
the concentratable entanglement is upper bounded by
Oðε2Þ, indicating that small errors in the state lead to a
small concentratable entanglement difference.
Properties of CjψiðsÞ.—We now present our main results

which provide properties and additional insight for the
concentratable entanglements. The proofs of these results
are provided in the Supplemental Material [52].
Theorem 1.—The concentratable entanglement has the

following properties:
(1): CjψiðsÞ is nonincreasing, on average, under LOCC

operations and hence is a well-defined pure state entangle-
ment measure. (2): If jψi is a separable state of the form

jψi ¼ ⊗
n

j¼1
jϕji, then CjψiðsÞ ¼ 0 for all s ∈ PðSÞnf=0g. (3):

Cjψiðs0Þ⩽ CjψiðsÞ if s0 ⊆ s. (4): Subadditivity, Cjψiðs ∪
s0Þ⩽ CjψiðsÞ þ Cjψiðs0Þ for s ∩ s0 ¼ =0. (5): Continuity, let
jψi and jϕi be two states such that kjψihψ j − jϕihϕjk1 ⩽ ε;
then jCjψiðsÞ − CjϕiðsÞj⩽ 2ε.
Here, property (3) guarantees that the concentratable

entanglement always measures less entanglement in any
subsystem of s. In addition, we remark that, by combining
properties (3) and (4), we have fCjψiðsÞ;Cjψiðs0Þg⩽ Cjψiðs∪
s0Þ⩽ CjψiðsÞþCjψiðs0Þ for s ∩ s0 ¼ =0.
To further understand how the concentratable entangle-

ments measure entanglement, we provide additional details
on the probabilities pðzÞ. First, consider the following
explicit formula for the probabilities pðzÞ.
Proposition 2.—Given the expansion of the state

jψi ¼ P
i ciji1iji2i;…; jini, the probability pðzÞ for any

z ∈ Z is given by

pðzÞ ¼ 1

2n

X

i;i0;j;j0
cici0c�j c

�
j0T ii0jj0 ðzÞ; ð3Þ

whereT ii0jj0 ðzÞ ¼
Q

k½δikjkδi0kj0k þ ð−1Þzkδikj0kδi0kjk �, andwhere
zk denotes the kth bit in z.
Alternatively, one can also express pðzÞ as a function

of purities of reduced states of jψi. Let us define as wðzÞ
the Hamming weight of z, and let S1 ⊆ S be the
set of labels for the bits in z that are equal to 1 [with
jS1j ¼ wðzÞ]. Finally, let chs be the cardinality of Sh ∩ s.
One finds

pðzÞ ¼ 1

2n

X

s∈PðSÞ
ð−1ÞchsTrρ2x: ð4Þ

Equation (4) leads to the following proposition.
Proposition 3.—If z has odd Hamming weight [if wðzÞ is

odd], then pðzÞ ¼ 0.
Proposition 3 has several implications. First, one can see

that by performing the n-qubit parallelized SWAP test, one
can never measure a bitstring with an odd number of ones.
Then, the formula for the concentratable entanglements in
Proposition 1 can be expressed as

CjψiðsÞ ¼
X

z∈Zeven
1

ðsÞ
pðzÞ; ð5Þ

where we recall that Z0ðsÞ was defined as the set of all
bitstrings with 0’s on all indices in s, and where we
respectively define Zeven

1 ðsÞ and Zodd
1 ðsÞ as the compli-

ments of Z0ðsÞ with even and odd Hamming weight, such
that Z0ðsÞ ∪ Zeven

1 ðsÞ ∪ Zodd
1 ðsÞ ¼ Z. Simply said,

Zeven
1 ðsÞ is the set of bitstrings with even Hamming

weight and with at least a 1 in an index in s. For instance,
if s ¼ S (i.e., when the concentratable entanglement mea-
sures all the correlations in jψi), then CjψiðSÞ¼1−pð0Þ¼P

z∶wðzÞevenpðzÞ, and we recover exactly the conjectured
measure of entanglement of [42].
Equation (5) shows that the information of the multipartite

entanglement in jψi is encoded in the probabilistic outcomes
of the n-qubit parallelized SWAP test when an even number
of control qubits are measured in the j1i state. For instance,
the probability of measuring a bitstring with Hamming
weight wðzÞ ¼ 2, where zk ¼ zk0 ¼ 1 contains information
regarding the bipartite entanglement between qubits k and k0.
Specifically, the following proposition holds.
Proposition 4.—Let jψi be a biseparable state

jψi ¼ jψiA ⊗ jψiB. Then for any bitstring z of
Hamming weight wðzÞ ¼ 2, where zk ¼ zk0 ¼ 1 we have
pðzÞ ¼ 0 if qubit k is in subsystem A, and qubit k0 is in
subsystem B.
Proposition 4 can be generalized to show that the

probability of measuring a bitstring with Hamming weight
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wðzÞ contains information regarding the entanglement
between the qubits with labels in S1. That is, one can
prove that pðzÞ is equal to zero if the qubits in S1 belong to
nonentangled partitions of jψi.
Here we remark that while the pðzÞ contain information

regarding the multipartite entanglement in jψi, these
probabilities are generally not entanglement monotones.
The exception is pð1Þ when n is even, i.e., the probability
of measuring all the control qubits in the j1i state. For this
special case we find the following.
Proposition 5.—If n is even, then pð1Þ is an entangle-

ment monotone. Moreover, in this case pð1Þ ¼ τðnÞ=2n.
where τðnÞ is the n tangle.
The n tangle was introduced in [28] as a measure of

multipartite entanglement in n qubits states that generalizes
the concurrence [60,61]. The n tangle of a pure state jψi is
τðnÞ ¼ jhψ jψ̃ij2, with jψ̃i ¼ σ⊗n

y jψ�i where σy is the Pauli-
Y operator, and jψ�i is the conjugate of jψi. Hence, for the
special case of 2 qubits one finds that CjψiðsÞ ¼ τð2Þ=4 ¼
C2=4 for all s ∈ PðSÞ, where here C denotes the con-
currence [60]. In general, we see from Proposition 5 that the
n tangle is always one of the terms in the summation of
Eq. (5), and hence is included in the concentratable
entanglements.
Interestingly, pðzÞ can also be interpreted as the prob-

ability of concentrating the entanglement in the two copies
of jψi and “distilling” Bell pairs.
Proposition 6.—Given two copies of jψi, if the kth

control qubit of the n-qubit parallelized SWAP test was
measured in the state j1i, then the joint postmeasured state
of the kth qubits of each copy of jψi is the Bell
state jΦ−i ¼ ð1= ffiffiffi

2
p Þðj01i − j10iÞ.

Proposition 6 shows that when one measures [with
probability pðzÞ] a bitstring z with (even) Hamming weight
wðzÞ, then one has produced wðzÞ Bell pairs between qubits
in the different copies of jψi with indices in Sh. This
protocol is schematically shown in Fig. 2. In addition,
Proposition 6 also sheds additional light on the concen-
tratable entanglement CjψiðsÞ as the probability of obtaining
any of the qubit pairs with labels in s in a Bell pair when
performing a SWAP test.
Examples.—Let us now showcase how the probabilities

pðzÞ and the concentratable entanglement can be used to
characterize and quantify the multipartite entanglement in
n-qubitW andGHZ states. First, let us consider theW state
jWi ¼ ð1= ffiffiffi

n
p ÞPx∶wðxÞ¼1 jxi, i.e., the equal superposition

of all states with Hamming weight equal to 1. A direct
calculation shows that pðzÞ ¼ ð1=n2Þ for all z with wðzÞ ¼
2 and pðzÞ ¼ 0 for all z with wðzÞ > 2. That is, in Eq. (5)
one can only have terms where z has only two 1s.
Concomitantly, when employing the n-qubit parallelized
SWAP test one cannot concentrate the multipartite entan-
glement in jWi to simultaneously produce more than two
Bell pairs. Then, noting that for a given s there are

PcðsÞ
μ¼1ðn−μ1 Þ ¼ cðsÞ½2n − cðsÞ − 1�=2 nonzero terms in

Eq. (5), one finds CjWiðsÞ ¼ cðsÞ½2n − cðsÞ − 1�=2n2.
On the other hand, consider the GHZ state

jGHZi ¼ ð1= ffiffiffi
2

p Þðj0i þ j1iÞ. We now find pðzÞ ¼
ð1=2nÞ for all z with (even) Hamming weight wðzÞ⩾2.
Unlike the W state, when employing the n-qubit paral-
lelized SWAP test one can obtain up to n simultaneous Bell

pairs. In this case, given s, there are
PcðsÞ

μ¼1

Pðn−μþ1Þ=2
ν¼1 ð n−μ

2ν−1Þ
nonzero terms in Eq. (5), leading to CjGHZiðsÞ ¼
1
2
f1 − 1=½2cðsÞ−δcðsÞn �g, where the δcðsÞn arises from the fact

that cðnÞ ¼ n and cðnÞ ¼ n − 1 have the same number of
terms. Note that, as expected, both CjWiðsÞ and CjGHZiðsÞ
only depend on the cardinality of s and not on the actual
indices in the set, as both states are invariant under
permutations of the qubits.
We can now show that when s ¼ fjg [cðsÞ ¼ 1],

then CjWiðfjgÞ ¼ ½ðn − 1Þ=n2� and CjGHZiðfjgÞ ¼ 1
4
. This

implies that the bipartite entanglement of a single
qubit in jWi decreases with n, while on the other hand,
it is constant for any n-qubit jGHZi state. Moreover, if
s ¼ S [cðsÞ ¼ n], then CjWiðSÞ ¼ ½ðn − 1Þ=2n� and
CjGHZiðSÞ ¼ 1

2
− 1

2n
, and we recover the results in [42].

Note that for both cases considered one finds that
CjGHZiðsÞ > CjWiðsÞ, and hence that the concentrable

FIG. 2. Protocol for concentrating entanglement. Given two
copies of jψi, one can employ the n-qubit parallelized SWAP test
to prepare Bell pairs between qubits in the different copies of jψi.
Specifically, measuring the kth control qubit in the state j1i
implies that the joint state of the kth qubit of each copy of jψi is
the Bell state jΦ−i ¼ ð1= ffiffiffi

2
p Þðj01i − j10iÞ. Hence, a single run

of the n-qubit parallelized SWAP test has a probability pðzÞ of
concentrating the multipartite entanglement in the copies of jψi
and producing wðzÞ Bell pairs.
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entanglements detect more multipartite entanglement in
jGHZi than in jWi. For s ¼ S, however, in the limit of
n → ∞ both CjGHZiðsÞ and CjWiðsÞ tend to the same value
of 1

2
. Lastly, we note that a property of W states is that if 1

qubit is measured and projected out of the state, one can
still measure entanglement in the ensuing state.
Specifically, if one measures a qubit, then the concentrat-
able entanglement will be equal to cðsÞ½2n − cðsÞ −
3�=2ðn − 1Þ2 (to 0) with probability 1 − 1=n2 (1=n2), as
this corresponds to measuring the qubit in the zero (one)
state. However, for GHZ states, projecting out just 1 qubit
always yields a state with zero concentratable entanglement
—confirming the well-known fact that while the W state is
less entangled than the GHZ, it is more robust to noise.
In Fig. 3 we further analyze the difference ΔC ¼

CjGHZiðsÞ − CjWiðsÞ for different cardinalities of s. Here
we see that for cðsÞ⩽n=2, ΔC increases (or remains
constant) as n increases implying that, again, small sub-
systems of qubits in jWi contain less multipartite entan-
glement than those in jGHZi. For cðsÞ ∼ n, the difference
ΔC decreases as n increases, showing that the total
multipartite entanglement is asymptotically the same for
the two states.
Conclusion.—In this work, we introduced a computable

and operationally meaningful family of entanglement
monotones called the concentratable entanglements. For
a pure state jψi, these quantities can be estimated on a
quantum computer given two copies of jψi via a paral-
lelized SWAP test. We showed that they quantify and
characterize the entanglement in and between subsystems
of the composite quantum state in addition to quantifying
global entanglement. We derived their operational meaning
in terms of the probability of obtaining Bell pairs via the
parallelized SWAP test. We also showed that well-known
entanglement measures such as the n tangle, concurrence,
and linear entropy of entanglement are recovered as special

cases of concentratable entanglements. As a special case of
our results, we proved a conjecture from Ref. [42],
which claimed that the parallelized SWAP test could be
used to quantify and categorize pure state multipartite
entanglement.
An important future direction will be to experimentally

observe our entanglement measures on real quantum
devices (e.g., using a quantum optical Fredkin gate
[62]). A detailed analysis of the impact of hardware noise
on the parallelized SWAP test will be useful for such
implementations. As noise can turn pure states into mixed
states, an additional important direction will be to general-
ize our entanglement measures (and their operational
meaning) to mixed states. Finally, one could also
analyze if a SWAP test with more copies of jψi can
provide further information beyond that in the concentrat-
able entanglement.
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