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The generation and verification of genuine multipartite nonlocality (GMN) is of central interest for both
fundamental research and quantum technological applications, such as quantum privacy. To demonstrate
GMN in measurement data, the statistics are commonly postselected by neglecting undesired data. Until now,
valid postselection strategies have been restricted to local postselection. A general postselection that is
decided after communication between parties can mimic nonlocality, even though the complete data are local.
Here, we establish conditions under which GMN is demonstrable even if observations are postselected
collectively. Intriguingly, certain postselection strategies that require communication among several parties
still offer a demonstration of GMN shared between all parties. The results are derived using the causal
structure of the experiment and the no-signaling condition imposed by relativity. Finally, we apply our results
to show that genuine three-partite nonlocality can be created with independent particle sources.
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Introduction.—Bell nonlocality [1,2] is one of the most
intriguing discoveries in modern physics. Besides its
heavily discussed fundamental significance and implica-
tions [3–5], several technological applications have been
developed in fields such as communication [6,7], quantum
cryptography [8–12], certified random number generation
[13,14], and quantum computation [15,16]. Growing inter-
est is experienced by the field of multipartite nonlocality
[3,17–23]. Here, genuine multipartite nonlocality (GMN), a
subclass of multipartite nonlocality, plays a central role.
Genuinely multipartite nonlocal correlations cannot be
described by nonlocal correlations confined to different
groups of subsystems but require collective nonlocal
correlations between all subsystems [18–20]. This stronger
form of nonlocality is the key ingredient for many future
quantum technologies such as the quantum internet [24–26]
and device-independent multipartite quantum key distribu-
tions [17,21–23], and serves as a detection of genuine
multipartite entanglement [27–35].
Imagine a group of n experimental parties that have

performed an experiment together. Now they want to
examine if their observed results demonstrate the presence
of GMN by the violation of a Bell inequality [1,36],
cf. Fig. 1. A first test of the Bell inequalities using the
complete measurement statistics does not yield any viola-
tion. It is known that a common postselection strategy that
can be decided locally, i.e., each party knows whether to
keep or neglect its measurement result without knowledge
of other parties, can be used to verify Bell nonlocality [37].
Say that even a local postselection of results does not
suffice for a violation of the Bell inequalities. Generally, the
more data is ignored, the more Bell inequalities can be
violated, cf. Figs. 1(b) and 1(c). However, the correlations

could be created by the postselection bias [38]: a post-
selection that is decided collectively by the experimental
parties can potentially mimic nonlocal behavior even if the
underlying statistics can be described by local hidden-
variable models [39–42]. Can the parties employ strategies
beyond local postselection to verify genuine multipartite
Bell nonlocality of their correlations?
An instance of this problem affects a proposal by Yurke

and Stoler (YS) [43] to create Einstein-Podolsky-Rosen
(EPR) effects [44] of the Greenberger-Horne-Zeilinger
(GHZ) type [45,46] from independent particle sources.
Unlike common approaches to create nonlocal behavior or
entanglement by an interaction between subsystems that
are then send to the parties, YS make use of the (bosonic
or fermionic) Hong-Ou-Mandel effect [47] to create non-
locality [43,48]. A generalization of Ref. [43] became
a standard method to create optical GHZ states [45,49–51].

(c)(b)(a)

FIG. 1. After postselecting their experimental observations, three
parties could observe that they share (a) no nonlocal correlations,
(b) multipartite (but not genuine multipartite) nonlocality, or
(c) genuine multipartite nonlocality (GMN). When can they be
sure that their postselection did not create fake correlations?
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The EPR effects in Ref. [43] suffice to exclude local
hidden-variable models. However, the necessary postse-
lection to demonstrate GMN cannot be decided locally.
Thus, the YS scheme did not show GMN until now.
In this work, we introduce postselection strategies

beyond local postselection that can be employed to
demonstrate GMN. Our analysis of the multipartite Bell
scenario provides sufficient conditions such that a collec-
tive postselection is valid. Particularly, in the n-partite case,
a postselection is valid if it can be decided even after
exclusion of any bn=2c parties from the decision, where b:c
is the floor function. This implies that, somewhat surpris-
ingly, statistics that were postselected through communi-
cation of several parties can still serve as a certification of
GMN among all parties. In the three-partite case, the
postselection condition simplifies to an all-but-one princi-
ple similar to Ref. [52], where causal diagrams are used to
safely postselect statistics to verify general (nongenuine)
multipartite nonlocality. Here, we use causal diagrams for
hybrid local-nonlocal hidden-variable models (instead of
local hidden-variable models [52]) to prove valid post-
selections for GMN. In addition, we explicitly use the no-
signaling principle dictated by relativity. The analysis is
performed using causal diagrams [38,52] that extend the
language of statistics to include a causal examination of
multivariate data. We emphasize that in contrast to the
common use of causal diagrams as an explanatory tool in
quantum physics, the current work and Ref. [52] show that
causal diagrams can be exploited to derive new theorems.
We finally apply our results to the YS setup [43] to show
that genuine three-partite nonlocality can be created from
independent particle sources.
Main results.—Bell nonlocality can be certified if the

measured statistics violate a Bell inequality that was
derived assuming local realism and free will. By the latter
assumptions, the general joint probability distribution of
experimental results can be written as a local hidden-
variable model [1,36], yielding conditions on the statistics
in the form of Bell inequalities. To derive Bell inequalities
that distinguish between partial nonlocality and GMN,
the local hidden-variable model is replaced by a hybrid
local-nonlocal hidden-variable model [18,20,53,54].
A violation of these inequalities then demonstrates the
presence of GMN.
Commonly, measured statistics are postselected to obtain

statistics that violate Bell inequalities. However, postse-
lection potentially creates additional correlations due to the
postselection bias [38,52,57] which can mimic nonlocal
behavior. In the following, we introduce postselection
strategies that are valid to demonstrate GMN.
First, consider a three-partite Bell scenario. The hybrid

hidden-variable model asserts that, given that the three
parties Alice, Bob, and Charlie measure observables x, y,
and z, the probability for outcomes a, b, and c is given by
[18,20,53]

Pabcjxyz ¼
X

λ1∈Λ1

Pλ1Pbcjyzλ1Pajxλ1

þ
X

λ2∈Λ2

Pλ2Pacjxzλ2Pbjyλ2 þ
X

λ3∈Λ3

Pλ3Pabjxyλ3Pcjzλ3 ;

ð1Þ

where
P

λ∈Λ Pλ ¼ 1, Λ ¼ Λ1 ∪ Λ2 ∪ Λ3. Here, we divided
the hidden variables Λ into subsets Λi indicating which two
parties share nonlocal correlations for a given λ. The free
will assumption was used to write Pλjxyz ¼ Pλ, i.e., meas-
urement choices are independent of the hidden variables.
Furthermore, the correlations in Eq. (1) must fulfill the no-
signaling principle [20], e.g.,

Pajxyz ¼ Pajx: ð2Þ

This ensures that no party can send information to other
parties instantaneously by choice of the measurement
setting. While valid Bell inequalities for genuine non-
locality can be derived without demanding the no-signaling
principle [18], stronger Bell inequalities can be proven
including no-signaling (or one-way signaling) conditions
[20]. Our results only hold if the hybrid hidden-variable
model fulfills the no-signaling (or one-way signaling)
condition. A diagram describing all possible causal rela-
tions of the different random variables is shown in Fig. 2(a).
Each variable is represented as a capital letter while their
possible values are denoted as lowercase letters. Solid
arrows describe possible causal influences along the
arrows’ directions [38]. We emphasize that some causal
influences are restricted by the no-signaling conditions and
cannot be described by any classical causal model without
fine-tuning [58,59]. For instance, while there might be a
causal influence from Y to B and from B to A, there is no
causal influence from Y to A, cf. Eq. (2). By conditioning
on a particular Λi, the causal diagram can be restricted, see
Fig. 2(b) for Λ3. In the following, boxes around variables in
the diagram indicate that the variables are conditioned on.
Consider now a postselection (represented as a binary

variable K) of the observed results. We expand the
postselected statistics in terms of the local hidden variables,

Pabcjxyzk ¼
X

λ

PλjxyzkPabcjxyzλk: ð3Þ

This exposes that a sufficient condition that Pabcjxyzk fulfills
a Bell inequality derived from Eq. (1), is that Pabcjxyzk
factorizes in a similar way: if

ðIÞ Pλjxyzk ¼ Pλjk;

ðIIcÞ Pabcjxyzλ3k ¼ Pabjxyλ3kPcjzλ3k;

with similar conditions (IIa) and (IIb) for Λ1 and Λ2, the
postselected statistics are valid to test for a violation of the
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Bell inequality. Note that one could also require that the
postselected statistics fulfill the no-signaling principle (2) if
the no-signaling conditions are needed to derive the Bell
inequality of interest [20].
We now focus on postselection strategies that can be

equivalently decided by any subset of the experimental
parties of a certain minimum size. For three parties, we
consider a postselection K that can be equivalently decided
by any two parties, implying that

PðABÞ
abcjxyzk ¼ PðACÞ

abcjxyzk ¼ PðBCÞ
abcjxyzk ð4Þ

where, e.g., PðABÞ
abcjxyzk denotes the postselected conditional

probability when the postselection is decided by Alice and
Bob. Thus, the postselected distribution coincides for

whichever two parties reconcile to decide it, and we simply
write Pabcjxyzk in the following. This decision equivalence
requires global conditions on the possible experimental
results such that the latter become partially redundant. An
example that we will further discuss below are experiments
where, for postselection, each party should find a certain
number of particles and the total number of particles is
conserved.
The central tool in the proof of our results is causal

inference and the d-separation tool set [38,52]: given a
causal diagram that connects different random variables
(nodes) with causal relations (arrows), only certain depend-
encies between variables are possible [38]. In short, two
variables can only be dependent if they are connected by a
path. The d-separation rules dictate which paths are
blocked when conditioning on other variables of the
diagram. The d-separation rules read as follows: (1) a path
is blocked if there is a collider in the path, i.e., a variable at
which causal arrows collide, (2) conditioning on a non-
collider along the path blocks the path, (3) conditioning on
a collider (or its descendant) along the path unblocks the
path. We can now prove our first main result.
Theorem 1. In the three-partite Bell scenario, a post-

selection that can be decided by any two (all-but-one)
parties is valid for verification of genuine three-partite
nonlocality.
Proof.—Assume that the postselection K can be decided

by any two parties. Thus, we can add to the causal diagrams
of Figs. 2(a) and 2(b) the postselection variable K with
causal influences from any two parties, e.g., A and B, see
Fig. 2(c). All of the resulting diagrams are valid and can be
used in the proof. Condition (I) is proved in three steps.
First, we show Pλjxyzk ¼ Pλjxyk. In Fig. 2(c), we condition
on X, Y, and K (indicated as boxes) and check for all
possible paths between Λ and Z. The direct path Z → C ←
Λ is blocked because C is a collider (that is not conditioned
on) along this path. Consider the path Z → C → A → K ←
B ← Λ. If there were general causal influences from Z to A,
this path would be open because the collider K is
conditioned on. However, using the no-signaling condition
between Alice and Charlie, Z can have no influence on A so
this path is blocked. This restriction is marked as a dotted
line in Fig. 2(c), indicating that this path segment is
blocked. Similarly, one can reason that all paths between
Λ and Z are blocked. We note that, above, the conditioning
on X and/or Y can also be removed without unblocking any
path. By using similar diagrams as in Fig. 2(c) but with the
postselectionK decided by A and C (and conditioning on X
and K), one shows that Pλjxyk ¼ Pλjxk. Finally, a diagram
with K decided by B and C (and conditioning only on K)
yields Pλjxk ¼ Pλjk and condition (I) follows. These steps
and their causal diagrams are detailed in Supplemental
Material [60]. No-signaling conditions on the postselected
statistics such as, e.g., Pajxyzλk ¼ Pajxλk, can be proven in a
similar fashion. Note that condition (I) even holds true even

FIG. 2. (a) Causal diagram of the three-partite hybrid local-
nonlocal hidden-variable model (1). The causal relations are
subject to the no-signaling conditions (2). (b) Causal diagram of
the subensemble Λ3 of the hybrid model, allowing for correla-
tions between A and B. (c)–(f) Causal diagrams representing
different steps of the proof of safe postselection if the post-
selection (K) is decided by two parties. Solid arrows represent
possible causal influences between variables. Variables that are
conditioned on are marked with a box. In (c), we indicate a fine-
tuning condition due to the no-signaling principle as a dotted line.
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if the no-signaling condition is replaced by the less
restrictive one-way signaling condition [20] (then the order
of the three steps matters). To show condition (IIc), we first
use the chain rule to write

Pabcjxyzλ3k ¼ Pabjcxyzλ3kPcjxyzλ3k: ð5Þ

We have that Pcjxyzλ3k ¼ Pcjyzλ3k, see Fig. 2(d), and
similarly Pcjyzλ3k ¼ Pcjzλ3k. For the other term, we have
Pabjcxyzλ3k¼Pabjxyzλ3k [Fig. 2(e)] and Pabjxyλ3k [Fig. 2(f)].
This yields condition (IIc). Conditions (IIa) and (IIb) can be
shown using the relevant diagrams. Note that, to prove
conditions (II), we do not have to use the no-signaling
condition. ▪
Now let us turn to conditions for valid postselection for

detecting genuine n-partite nonlocality for n > 3. First
consider the case n ¼ 4. The corresponding local-nonlocal
hidden-variable model consists of subensembles that allow
nonlocal correlations among at most three parties. Similar
to above, an all-but-one postselection is valid when applied
to subensembles for which three parties share nonlocality
and the remaining party is only correlated by a common
local hidden variable. However, for subensembles in which
two pairs share bipartite nonlocality, an all-but-one post-
selection (i.e., a postselection decided by three parties) can
create a postselection bias: the postselected distribution of
these subensembles generally does not factorize into two
pairs of parties. This insight is discussed in detail in
Supplemental Material [60]. Therefore, for n ¼ 4, we
can only exclude a postselection bias if the postselection

can be decided by any two parties. Generally, we can prove
the following theorem. A detailed proof is given in [60].
Theorem 2. In the n-partite Bell scenario, a postselec-

tion that can be decided by any all-but-bn=2c parties is
valid for verification of genuine n-partite nonlocality.
Applications.—The above findings for n ¼ 3 can be

applied to setups where the number of particles is con-
served. This is similar to the findings of Refs. [50,52]
because undesirable events come in pairs. We now apply
our results to the YS proposal of Ref. [43]. The corre-
sponding setup for two parties [48] makes use of local
postselection which represents a valid postselection
[37,39]. For three parties, a local postselection is not
sufficient to violate Bell inequalities.
The setup of Ref. [43] is shown in Fig. 3. Three

independent sources (S1, S2, and S3) emit a single photon.
Each photon passes a beam splitter whose outcoming
modes are directed to two measurement parties. At each
party, the two incoming modes pass a second beam splitter
after which they are measured with photon-counting
detectors. Additionally, each party chooses a measurement
setting by imprinting a phase (ϕA, ϕB, and ϕC) in one of the
incoming modes. Each party P can either detect no photon
(0P), a single photon in the left (lP) or right detector (rP), or
two photons in the left (l2P) or right detector (r2P). For
perfectly indistinguishable photon sources, events with a
photon detection both detectors destructively interfere [47].
Assuming unit detection efficiency, the observed events

can be grouped into two groups: either each party receives a
photon, or one party does not detect a photon and one
detects two (D). The first group can be further divided into
an even (E) or odd (O) number of right detector clicks.
Depending on the total phase ϕ ¼ ðϕA þ ϕB þ ϕCÞ=2, the
probability PðeÞ of an event e is Pðe ∈ EÞ ¼ cos2ðϕÞ=16,
Pðe ∈ OÞ ¼ sin2ðϕÞ=16, and Pðe ∈ DÞ ¼ 1=32 [43]. To
observe genuine three-partite nonlocality, we must post-
select events in E and O. This postselection can be decided
by any two parties and, according to Theorem 1, is valid to
verify GMN. Indeed, say Alice measures two observables
xi (i ¼ 1, 2) resulting in outcomes a ¼ 1 (a ¼ −1) for
Alice’s observation of rA (lA), similarly for Bob and
Charlie. Hybrid hidden-variable models (1) fulfill the
three-partite-nonlocality-testing Svetlichny inequality [18]

I ¼ jhx1y1z1i þ hx1y1z2i þ hx1y2z1i þ hx2y1z1i
− hx1y2z2i − hx2y1z2i − hx2y2z1i − hx2y2z2ij ≤ 4;

ð6Þ

where h� � �i is a statistical average. Let Alice choose
between ϕA ¼ 0 (x1) and ϕA ¼ −π=2 (x2), Bob between
ϕB ¼ π=4 (y1) and ϕB ¼ −π=4 (y2), and Charlie between
ϕC ¼ 0 (z1) and ϕC ¼ −π=2 (z2). Then the Svetlichny
inequality (6) is maximally violated by the postselected
statistics, I ¼ 4

ffiffiffi
2

p
[61]. Note that, in the hybrid

FIG. 3. Proposal by Yurke and Stoler [43]: Three independent
photon sources emit photons that are distributed via beam
splitters among Alice, Bob, and Charlie. Each party imprints a
local phase in one of the incoming arms and measures the two
modes after applying a second beam splitter. After postselecting
events that show a single photon detection per party, the statistics
show genuinely nonlocal (GHZ-like) features. Since the post-
selection can be decided after exclusion of any party, it represents
a valid test for Bell inequality violations.
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hidden-variable model, we allow for a source of classical
shared randomness among all three parties.
In the case n > 3, a conservation of the number of

particles is not sufficient that postselection can be decided
by all-but-bn=2c parties. There must be further constraints
or conservation laws imposed on the possible events.
In experiments, finite detection efficiencies open an

additional loophole, the detection loophole [3,5,57]. In
schemes such as the YS proposal that fulfill the all-but-one
principle for perfect efficiencies, for realistic efficiencies
the postselection cannot be decided by all-but-one parties
anymore. Commonly, the detection loophole is circum-
vented by the fair-sampling assumption [3,5] that the
detection of incoming particles does not depend on the
measurement setting of the detector. The detection loophole
can be rigorously closed by sharpening the Bell inequalities
[62] or taking into account all observed events [37]. An
application of these methods to the YS proposal is beyond
the scope of this work.
Conclusions.—We have introduced postselection strate-

gies beyond local postselection such that the postselected
statistics can validly be used to examine Bell inequality
violation and verification of GMN. In the n-partite Bell
scenario, we have shown that postselected statistics re-
present valid tests of multipartite Bell inequalities if the
postselection can be decided by any all-but-bn=2c parties.
In other words, certain partially collaborative postselection
strategies do not hinder the certification of GMN.
Furthermore, the probability of successful postselection
can be arbitrarily small as long as it fulfills the above
condition. In the three-partite scenario, our results reduce to
an all-but-one principle and can be applied to setups where
the total number of particles is conserved. Particularly, for
the proposal by Yurke and Stoler [43], the postselected
statistics are shown to maximally violate the Svetlichny
inequality, demonstrating the creation of GMN from
independent particle sources. Our results crucially facilitate
the development of future quantum technologies due to the
key role played by GMN. The explicit use of causal
diagrams in the proofs highlights their potential as a
new tool in quantum and general physics.

This work was supported by the European Commission
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