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Under an applied traction, highly concentrated suspensions of solid particles in fluids can turn from a
state in which they flow to a state in which they counteract the traction as an elastic solid: a shear-jammed
state. Remarkably, the suspension can turn back to the flowing state simply by inverting the traction. A
tensorial model is presented and tested in paradigmatic cases. We show that, to reproduce the
phenomenology of shear jamming in generic geometries, it is necessary to link this effect to the elastic
response supported by the suspension microstructure rather than to a divergence of the viscosity.
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The rheology of highly concentrated suspensions of solid
particles dispersed in a viscous fluid features a number of
surprising phenomena [1–3], among which shear jamming
raises important questions for its interpretation and chal-
lenges for its mathematical modeling. If the concentration of
particles is not very high, the suspension presents a fluidlike
behavior. At high concentrations, one can instead observe a
sudden solidification that occurs after some strain in a shear
deformation, whence the name of shear jamming.
Under those conditions, the constant stress applied to the

suspension is balanced by the elastic response of the
solidified medium, arguably sustained by the network of
contacts developed among the solid particles during the
initial flow [4–7]. The shear-jammed material is in a fragile
state: if the applied stress is removed no motion arises, but
if we reverse the stress, pushing in a sufficiently different
direction, the suspension flows again and stops only once a
certain strain is accumulated. This history-dependent or
protocol-dependent rheological response marks a key
difference from states of isotropic jamming, in which the
suspension is so concentrated as to be unable to flow,
irrespective of the direction of the applied forces.
We present a constitutive model that is able to reproduce

the phenomenology of shear jamming and fragility. We
base its construction on the understanding that shear
jamming corresponds to the onset of an elastic response,
related to geometric constraints at the microscale, rather
than to a boost in dissipative phenomena, as implied by
models containing a divergence of the viscosity. We
devised an effective and yet mathematically simple model,
that features a small number of parameters easily linked to
experimental measurements.

We define a tensorial model at the outset, without going
through the process of designing a scalar model—typically
tailored to a restricted set of motions—and then extending
it. In this way, our model is readily applicable to flows
in general two- and three-dimensional geometries, both
boundary- and pressure-driven ones.
In the past decade, a fewmodels to describe the physics of

dense suspensions have been proposed, with a focus on
capturing discontinuous shear thickening and rationalizing
the role of frictional contacts between the solid particles
[8–14]. A common feature of such models is the attempt at
building a direct link between the emergent behavior and the
microstructure of the fluid, as characterized by the analysis
of data coming from detailed simulations at the microscale
level [15,16]. In relation to shear jamming, these models are
not readily applicable to the macroscale simulation of this
phenomenon, as they identify the jammed state with a
divergence of the viscosity [17] rather than the onset of
elastic responses, so that mathematical singularities appear
in the equations. On the other hand, we can find important
results in the construction of continuummodels that focus on
the macroscale dynamics [18] and utilize a two-material
approach, by following the coupled evolution of homo-
genized fluid and solid phases. Such models are quite
effective in reproducing certain observations but feature
several parameters that require calibration and involve a set
of equations with considerable complexity.
Our model is intended to capture the suspension behav-

ior at a rather large scale, when a single-fluid model is
appropriate. We do not take explicitly into account particle
migration phenomena [19–21] and rate dependence of the
viscosity or stress-induced solidification [17,22,23]. These
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can be incorporated for specific applications as extensions
of the model but are not essential to reproduce shear
jamming. In fact, we stress that it is possible to give a very
good qualitative description of shear jamming assuming a
constant viscosity, by associating jamming with the appear-
ance of elasticity.
The phenomenon of shear jamming can be viewed as the

emergence of solidity due to the evolution of the suspen-
sion microstructure. The activation of frictional contacts
between the particles leads to the presence of percolating
stable formations that span macroscopic portions of the
system [5,6,24–26]. This microscopic nonlocality of the
internal interactions marks the transition from a regime in
which momentum is transferred slowly and diffusively
(viscous fluid) to a regime in which momentum travels fast
and elastically across the system (jammed solid). When
the elastic response is very stiff, one can even approach
the macroscopic nonlocality represented by rigid-body
motions.
Another important aspect brought at the forefront by

shear jamming is the material memory. We obviously
observe a long-lasting memory of what would be the
relaxed configuration in the jammed solid regime, but
there is also a memory in the microstructure evolution that
governs the type and amount of deformation possible
within the fluid regime, in which no persistent elasticity
is detected [16,27]. Both these aspects need to be captured
in an effective continuum theory and we propose to use
tensorial models for all of them. As we shall see, the
kinematic descriptors of the system that are useful for our
purposes are the velocity field and its gradient, to capture
the viscous dissipation, and a tensorial measure of the strain
induced on the material by the motion. The latter quantity
keeps track of the microstructural deformation and, by
limiting its evolution with unilateral constraints in the
appropriate space of tensors, we can capture the transition
between the fluid regime and the solid one, meanwhile
preserving the characteristic reversibility represented by the
fragility of the shear-jammed state.
The tensorial model.—A crucial role in shear jamming is

played by the history of the deformation, as it induces some
organization of the suspension microstructure, eventually
responsible for the solidlike behavior. Alongside the
evolution equation for the velocity field u of a fluid with
mass density ρ,

ρ

�∂u
∂t þ ðu ·∇Þu

�
¼ divT; ð1Þ

driven by the Cauchy stress tensor T, we consider the
evolution equation for the deformation gradient tensor F
[see [28], Chap. 3, Sec. 3.2] in spatial coordinates:

∂F
∂t þ ðu · ∇ÞF ¼ ð∇uÞF: ð2Þ

Equation (2) is an exact kinematic relation between the
velocity and the displacement of fluid elements and does
not contain any constitutive assumption.
From F we define B≡ FFT and L≡ 1

2
logB, where log

denotes the matrix logarithm. This is well defined because
the left Cauchy-Green tensor B is symmetric and positive
definite for any physical motion. These kinematic quantities
track the local strain by factoring out rigid rotations, which
should not affect the elastic response. The tensor L is the
spatial counterpart of the Hencky strain and a generalization
of the scalar strain measured in simple shear flows. Several
advantages of its use are discussed in Ref. [29].
An important feature of L is that it is traceless whenever

detB ¼ 1. This is always the case for us, because we
assume incompressibility of the material, namely divu ¼ 0
at all times. We write the stress tensor as a pressure term
plus the traceless extra stress S, so that T ¼ −pIþ S.
The extra stress is the sum of a viscous dissipation plus
an elastic response. The dissipative term takes the form
2ηD, wherein the effective viscosity η of the suspension
multiplies the symmetric part of the velocity gradient
D≡ ð∇uþ∇uTÞ=2.
Regarding the elastic contribution to the stress, we

assume that there exists a predetermined subset N in the
space S of local strains (symmetric and traceless tensors)
corresponding to states in which the material is elastically
neutral. It means that, at each point x and instant t, if Lðx; tÞ
is in N there is no elastic response. This assumption is
motivated by the observation that there is a regime in which
particle contacts contribute to the effective viscosity but do
not store elastic energy and the macroscopic response is
purely viscous. In our model, the elastic response will be
proportional to a suitable measure of how far Lðx; tÞ is from
N . The overall isotropy of the suspension suggests to take
N to be a ball centered at the null tensor, namely N ≡
fM ∈ S∶kMk ≤ rg where, for any arbitrary tensor M, we
set kMk2 ≡ trðMTMÞ=2 and r > 0 is a dimensionless
material parameter that indicates how much the suspension
needs to be sheared to achieve a jammed microstructure
(and identifies the radius of N ). The value of r would
typically be a decreasing function of the volume fraction of
solid particles. When r ¼ 0 the suspension is an elastic
solid, as under isotropic jamming.
Because N is a closed convex subset of S, a projection

operator Π∶S → N is well defined and, for anyM ∈ S, the
tensor ΠðMÞ is the element of N closest to M. Such a
projection can be easily expressed as

ΠðMÞ≡
(
M if kMk ≤ r;

rM=kMk if kMk > r:
ð3Þ

To reflect the fact that an elastic response is activated
whenever the logarithmic measure of strain L leaves the
neutral subset N , we assume an extra stress of the form
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S ¼ 2ηDþ 2κðL − ΠðLÞÞ; ð4Þ

where the material parameter κ > 0 represents an elastic
stiffness. This is a “soft” way of constraining the strain (as
opposed to keeping it always withinN ) that is able to better
reproduce some details of the elastic effects observed in
the proximity of jamming [7]. With the present model, the
strain of the jammed material tends to remain close to the
boundary of N if the applied stress is driving it outward.
Conversely, the suspension can flow again as soon as the
stress drives L toward the interior of N . In this way we
can capture both shear jamming and the fragility of the
jammed state.
The tensor ΠðLÞ corresponds to a conformation tensor. It

describes a microstructure that closely follows the strain L
up to the boundary of N , where shear jamming prevents
further microstructural deformations. The inclusion of
additional dissipative phenomena, which may appear at
the onset of jamming, can be achieved by letting η depend
on a parameter such as λ≡ kL − ΠðLÞk.
Planar extensional flows.—We highlight the basic fea-

tures of the model in an idealized case, for which analytical
computations can be carried out. Under the deformation
associated with planar extensional flows, the current
position of a particle that occupies the place ðx0; y0Þ at
time 0 is given by φðx0; y0; tÞ ¼ ðx0eεðtÞ; y0e−εðtÞÞ and its
spatial inverse is φ−1ðx; y; tÞ ¼ ðxe−εðtÞ; yeεðtÞÞ, where εðtÞ
is an arbitrary function of time and measures the strain of
the material. We immediately obtain F ¼ diagðeεðtÞ; e−εðtÞÞ
and consequently B ¼ diagðe2εðtÞ; e−2εðtÞÞ. In this case, the
computation of the matrix logarithm is straightforward and
yields L ¼ diag(εðtÞ;−εðtÞ).
The velocity is uðtÞ ¼ (_εðtÞx;−_εðtÞy) and the symmetric

part of the velocity gradient, the usual measure of the rate of
deformation, is

D ¼
�
_εðtÞ 0

0 −_εðtÞ

�
¼ ∂L

∂t : ð5Þ

We stress that the second identity in (5) is not valid for a
generic flow (it does not hold, e.g., in simple shear); when
vorticity is present, rotation affects the deformation history
in a nontrivial way, and D and L cannot remain aligned.
This fact corresponds to the well-known presence of
normal stress differences in simple shear flows of visco-
elastic fluids.
We consider the extensional flow in a cross channel

with hyperbolic boundaries that allow for a perfect slip of
the fluid [Fig. 1(a)]. A pressure difference applied to
inlets and outlets of the channel generates normal tractions
τn at outlets and −τn at inlets, where n is the unit
outer normal to the boundary. In a slow-velocity regime,
the linearized flow equations give the pressure field
pðx; y; tÞ ¼ ρ̈εðtÞðy2 − x2Þ=2. The balance of stress at
ðx; yÞ ¼ ðl; 0Þ yields the following equation:

ρl2

2
̈εþ 2η_ε − τ ¼

8><
>:

−2κ½εþ r� if ε < −r;
þ0 if − r ≤ ε ≤ r;

−2κ½ε − r� if ε > r;

ð6Þ

where the dimensionless parameter r denotes, as above, the
radius of the neutral subset N . The derivation of Eq. (6) is
reported in the Supplemental Material [30], Sec. A.
This is a scalar ordinary differential equation for the

strain εðtÞ, equivalent to that of a damped oscillator
with elastic potential energy that features a flat region
for ε ∈ ½−r; r� and parabolic branches outside that interval
[Fig. 1(b)]. This entails transitions between a viscous fluid
behavior, for ε ∈ ½−r; r� when there is no elastic force, and
that of a viscoelastic solid when elastic forces are activated.
Clogging and unclogging.—Let us now consider how

the model performs in simulating a paradigmatic pressure-
driven flow through a contraction. In this planar flow, the
maximum width of the channel (Fig. 3) equals the con-
traction length l, while the contraction width is l=4. The
total length of the domain is 4l and we assume a uniform
unit depth. Periodic boundary conditions for u and F are
imposed at the left and right boundary of the domain, while
no-slip conditions are assumed on the top and bottom walls.
The pressure is not periodic: a pressure difference Δp
between the right and left openings is driving the flow.
We introduce a dimensionless form of the evolution

equations by defining a reference pressure difference P and
taking the channel width l as reference length. A reference
timescale is t0 ≡ l

ffiffiffiffiffiffiffiffi
ρ=P

p
, leading to t̃ ¼ t=t0. From these,

we set the Reynolds number Re and the dimensionless
elasticity constant κ̃ according to

Re≡ l
ffiffiffiffiffiffi
ρP

p
η

and κ̃≡ 2κl
η

ffiffiffiffi
ρ

P

r
;

(a) (b)

FIG. 1. We can imagine planar extension in a cross channel (a),
with hyperbolic boundaries (red solid lines) that allow for perfect
slip, to which we apply a pressure difference between the top or
bottom inlet and right or left outlet (blue dashed lines). The
linearized equations for the proposed model reduce in this case to
the scalar ordinary differential equation (6) for the strain function
ε. Considering the elastic force in Eq. (6), we see that it
corresponds to that of a damped oscillator with (b) an elastic
potential energy V featuring a flat region for ε ∈ ½−r; r�.
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and so that the dimensionless flow equation reads

Re

�∂ũ
∂ t̃ þ ðũ ·∇Þũ

�
¼ −∇p̃þ∇2ũþ κ̃divðL − ΠðLÞÞ:

ð7Þ

In what follows we consider all quantities as dimensionless
but drop the tildes for simplicity.
At startup,Δp is set positive, the flow accelerates and the

flow rate reaches a maximum at about t ¼ 1 (Fig. 2). The
deformation induced by the flow gives rise to shear-
jammed domains that grow from the boundaries toward
the center of the contraction [Fig. 3(b)]. This activates an
elastic response within the material that hinders the flow.
The pressure drop in the clogged state (t ¼ 8) is sustained
by jammed regions with a characteristic sawtooth shape
[Fig. 3(c)]. The intensity of the elastic response in each
region depends on the local pressure drop. When we
remove the pressure difference, from t ¼ 8 to t ¼ 10
(and again from t ¼ 14 to t ¼ 16), the stored elastic energy
is completely released with a small recoil and then the flow
stops (Fig. 2). Nevertheless, the microstructure remembers
to be close to shear jamming and when the pressure
difference is turned on again (t ¼ 10) only a small fluid
displacement is produced because we assist to a rapid
reactivation of the elastic response inside the contraction.
On the other hand, when Δp is reversed to a negative

value, the flow lasts for a longer time and the fluid
displaced through the contraction before shear jamming
sets in again is about twice as much as that displaced in the

first part of the experiment (Fig. 2). The shear-jammed
domains, where the elastic response is active, are destroyed
and rebuilt with a different spatial distribution by the
reverse flow [Fig. 3(d)]. The elastic stress at t ¼ 25
[Fig. 3(e)] sustains two subsequent pressure drops of about
Δp=2, thus showing two pairs of equally stresses jammed
domains. At t ¼ 8, the total pressure drop is almost entirely
sustained by the jammed domains on the left, while only a
slight elastic response is visible on the right side of the
contraction [Fig. 3(c)]. By mimicking randomness in the
suspension microstructure [22] with spatial fluctuations of
the initial deformation gradient, we obtained a more

FIG. 2. The present model can reproduce the features of shear
jamming in a complex flow through a contraction. We varied the
pressure difference ΔpðtÞ imposed between the left and the right
opening and measured the flow rate qðtÞ through a cross section
of the channel and its time integral QðtÞ ¼ R

t
0 qðsÞds. Parameters

in the simulation: channel width equals the contraction length l,
while the contraction width is l=4; Re ¼ 20

ffiffiffiffiffiffiffiffiffi
0.75

p
≈ 17,

κ̃ ¼ 100=
ffiffiffiffiffiffiffiffiffi
0.75

p
≈ 116, and r ¼ 1.5=

ffiffiffi
2

p
.

(b)

(c)

(d)

(e)

(a)

FIG. 3. (a) The entire domain is shown with the discretized
mesh. (b)–(e) The clogging of the channel is due to the presence,
within the contraction to which images are restricted, of shear-
jammed domains. These are characterized by a nonvanishing
elastic response measured by the parameter λ≡ kL − ΠðLÞk.
From panels (b) and (d) we can see that the jammed domains
nucleate and grow from the contraction boundaries, where the
strain grows faster. There is a clear difference between the shear-
jammed state (c) achieved at t ¼ 8 with a positive Δp, which
pushes rightward, and (e) the one obtained at t ¼ 25 after
reorganization with a negative Δp, which pushes leftward. In
particular, the sawtooth shape of the jammed regions is reflected.
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realistic nucleation of the shear-jammed regions. This
random seed is at the origin of the asymmetry between
the jamming process for positive or negativeΔp. Details on
the dependence of simulation results on meshing and
material parameters, together with movies of the time
evolution of pressure, flow, and elastic response are
presented in the Supplemental Material [30].
Conclusions.—We have shown how the knowledge

about a complex collective phenomenon, acquired by
means of experiments and simulations, can be transferred
into a rather simple model of the macroscale physics that
we observe. By relating shear jamming to the activation of
an elastic response and not to a divergence of the viscosity,
we developed a tensorial model able to reproduce the
qualitative features of shear jamming.
Such a model can be applied to generic flows and

geometries in both two and three dimensions, because it
rests on physical considerations that are not peculiar to a
specific experimental setup. It becomes particularly useful
to simulate the flow of suspensions in applications, where
the focus is on the emergent collective physics and not on
its microscopic origins.
Notably, we simulated a material able to switch, in a

reversible way, between a fluidlike and a solidlike behavior.
This feature, essential to capture shear jamming, can
suggest effective ways to deal also with yielding phenom-
ena. While we kept the model as simple as possible, many
extensions can be implemented to reproduce a rate-depen-
dent behavior.
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