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Quantum Griffiths singularity (QGS) reveals the profound influence of quenched disorder on the
quantum phase transitions, characterized by the divergence of the dynamical critical exponent at the
boundary of the vortex glasslike phase, named as quantum Griffiths phase. However, in the absence of
vortices, whether the QGS can exist under a parallel magnetic field remains a puzzle. Here, we study the
magnetic field induced superconductor–metal transition in ultrathin crystalline PdTe2 films grown by
molecular beam epitaxy. Remarkably, the QGS emerges under both perpendicular and parallel magnetic
field in four-monolayer PdTe2 films. The direct activated scaling analysis with a new irrelevant correction
has been proposed, providing important evidence of QGS. With increasing film thickness to six
monolayers, the QGS disappears under perpendicular field but persists under parallel field, and this
discordance may originate from the differences in microscopic processes. Our work demonstrates the
universality of parallel field induced QGS and can stimulate further investigations on novel quantum phase
transitions under parallel magnetic field.
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Two-dimensional (2D) crystalline superconductors [1]
are ideal platforms to study the quantum phase transition, a
continuous phase transition at absolute zero temperature
[2,3]. As a prototype of quantum phase transition, the
superconductor–insulator or superconductor–metal transi-
tion (SIT or SMT) has been widely and intensely inves-
tigated,where the quantum fluctuations play a dominant role
and determine its characteristics [4,5]. The recent observa-
tions of quantumGriffiths singularity (QGS) of SMTin low-
dimensional superconducting systems [6–13], characterized
by a divergent critical exponent zν, challenge the conven-
tional understanding of the quantum phase transition. QGS
reveals the profound influence of the quenched disorder on
SMT, which originates from the disorder driven evolution
from vortex lattice to vortex glasslike phase, named as
quantum Griffiths phase. The quantum Griffiths phase
consists of large superconducting rare regions and the
surrounding normal state. The size of these superconducting
regions keeps increasing with decreasing temperature to
zero, and the slow dynamics leads to a divergent critical
exponent zν of SMTin 2D systems [14,15], in contrast to the

constant zν observed in conventional quantum phase tran-
sitions [2,3]. The previous experimental works focus on the
observation of QGS under perpendicular magnetic field.
Under parallel field, the experimental investigation of QGS
in the absence of vortices in 2D crystalline superconductors
is highly desired.
In this Letter, we report the transport properties of 4- and

6-monolayer (ML) PdTe2 films via ultralow temperature
transport measurement. Remarkably, the divergence of
critical exponent zν as an evidence of QGS is detected
in 4-ML PdTe2 films under both perpendicular and parallel
magnetic field. Moreover, the QGS is directly identified by
the activated scaling analysis with a new irrelevant cor-
rection. Interestingly, with increasing film thickness, the
QGS disappears in the 6-ML film under perpendicular field
but still exists under parallel field, revealing different
microscopic processes of QGS under different field direc-
tions. We propose that the disorder can significantly
influence the strength of spin-orbit coupling (SOC) and
the in-plane critical field, which gives rise to the quantum
Griffiths phase without vortex formation.
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The ultrathin crystalline PdTe2 films were epitaxially
grown on Nb-doped SrTiO3ð001Þ substrates in the ultra-
high vacuum molecular beam epitaxy chamber (see
Supplemental Material, Methods for details [16]). The
morphology of the PdTe2 films is characterized by the
scanning tunneling microscope [20]. The PdTe2 thin films
are ambient-stable superconductors, which do not require a
capping layer for ex situ transport measurement. Figure 1
presents the superconducting properties of 4-ML PdTe2
film, measured in a dilution refrigerator (MNK 126-450;
Leiden Cryogenics BV) down to 20 mK. The standard
four-electrode transport measurements are schematically
shown in the inset of Fig. 1(c) (see Supplemental
Material, Methods for details [16]). The superconducting
transition begins at Tonset

c ¼ 700 mK, which is defined as
the crossing point of the linear extrapolations of normal
state and superconducting transition curve. With decreasing
temperature, the sheet resistance drops to zero within
the measurement resolution at Tzero

c ¼ 570 mK. As the
perpendicular magnetic field increases, the 4-ML PdTe2
film undergoes a superconductor to weakly localized metal
transition with a quantum critical resistance (around
977 Ω) much smaller than the quantum resistance for
Cooper pairs (h=4e2 ∼ 6.45 kΩ, where h is the Planck

constant and e is the elementary charge), as shown in the
inset of Fig. 1(a). The sheet resistance increases with
decreasing temperature when the magnetic field exceeds
0.98 T, indicating localized metal behavior. The
perpendicular magnetic field dependence of sheet resis-
tance at different temperatures from 20 to 450 mK is
displayed in Fig. 1(b) (see Supplemental Material, Fig. S1
for the magnetoresistance in a large magnetic field region
[16]). Different from conventional SMT, the magnetoresist-
ance isotherms cross each other in a relatively large and
well-defined transition region around 0.9 T at low temper-
atures rather than a single critical point, reminiscent of
QGS. The crossing points of RsðBÞ curves at neighboring
temperatures are shown as black dots in the inset of
Fig. 1(b). Furthermore, based on the finite size scaling
analysis [2,3,16], the magnetic field dependence of the
effective “critical” exponent zν is summarized in Fig. 1(c).
When approaching the characteristic magnetic field B�

c and
zero temperature, zν grows rapidly and then diverges. The
field dependence of zν can be well fitted by the activated
scaling law zν ∝ jB�

c − Bj−νψ with the correlation length
exponent ν ≈ 1.2 and the tunneling critical exponent ψ ≈
0.5 for 2D systems [21,22], providing experimental evi-
dence of QGS in the 4-ML PdTe2 film under perpendicular

FIG. 1. The QGS of 4-ML PdTe2 film under perpendicular magnetic field. (a) Temperature dependence of sheet resistance Rs at zero
magnetic field, showing Tonset

c ¼ 700 mK and Tzero
c ¼ 570 mK. Inset: RsðTÞ curves at various magnetic fields from 0.720 to 1.200 T.

(b) RsðBÞ curves at detailed temperatures ranging from 20 to 450 mK. Crossing points from the RsðBÞ curves are shown in the inset. The
solid red line is the fitting curve from the activated scaling analysis with irrelevant correction. (c) Critical exponent zν as a function of
perpendicular field. The solid red line shows a fitting curve based on the activated scaling law and gives B�

c ¼ 0.985 T (vertical dashed
line). The horizontal dashed red line shows zν ¼ 1. Inset: The schematic for standard four-electrode transport measurements. (d) The
direct activated scaling analysis of the RsðBÞ curves from 20 to 240 mK with the irrelevant correction. Here, R̃ represents the sheet
resistance considering the irrelevant correction and δ ¼ jB − B�

cj.
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magnetic field with the infinite-randomness quantum criti-
cal point. We define the QGS under perpendicular (out-of-
plane) field as the out-of-plane QGS. The out-of-plane
QGS is confirmed in another 4-ML PdTe2 film as shown in
Supplemental Material, Fig. S2 [16].
The divergence of effective critical exponents zν near the

quantum critical point originates from the activated scaling
behavior of QGS [23]. Thus, we utilize the direct activated
scaling analysis with the irrelevant parameter correction
as follows [13]: R ¼ Φf½ðB − B�

cÞ=B�
c�½lnðT�=TÞ�ð1=νψÞ;

u½lnðT�=TÞ�−yg. Here, T� is the characteristic temperature
of quantum fluctuation, u is the leading irrelevant scaling
variable and y > 0 is the associate irrelevant exponent. (See
Supplemental Material Part II for detailed numerical scal-
ing procedure [16].) The irrelevant correction also gives a
good fitting for the phase boundary BcðTÞ of super-
conductor–metal transition [13]: f½B�

c − BcðTÞ�=B�
cg ∝

u½lnðT�=TÞ�−ð1=νψÞ−y. The fitting of BcðTÞ is shown in
the inset of Fig. 1(b). The activated scaling of twenty-three
sets of data in the temperature range from 20 to 240 mK is
presented in Fig. 1(d), providing direct evidence of QGS.
We then investigate the superconducting properties of 4-

ML PdTe2 films under parallel magnetic fields up to 16 T in
a commercial physical property measurement system with
dilution refrigerator option down to 50 mK. Interestingly,
as shown in Fig. 2, the film exhibits the characteristics of

QGS, which is quite similar to the observations under
perpendicular field. To be specific, the RsðBÞ curves at
different temperatures reveal a large transition region in
Fig. 2(a) and the crossing points are consistent with the
activated scaling model with irrelevant corrections as
shown in Fig. 2(b). Moreover, the effective critical expo-
nent zν follows the activated scaling law zν ∝ jB�

c − Bj−0.6
when approaching characteristic field B�

c and zero temper-
ature [Fig. 2(c)]. The direct activated scaling analysis with
irrelevant corrections [Fig. 2(d)] and the divergence of zν
provide solid evidence of QGS under parallel magnetic
field (named as in-plane QGS).
The detection of the out-of-plane and in-plane QGS in

4-ML PdTe2 films indicates the universality of QGS under
different field orientations. It is noteworthy that the vortex-
lattice phase can evolve into vortex-glass phase driven by
quenched disorder under perpendicular magnetic field,
which finally leads to QGS. However, this theoretical
scenario does not work under parallel field where the
vortex is absent, suggesting a different microscopic mecha-
nism for in-plane QGS. Further exploration of QGS with
different sample thickness may provide essential informa-
tion for understanding the origin of in-plane QGS.
Thus, we performed ultralow temperature transport

measurements on 6-ML PdTe2 films. Figures 3(a) and
3(b) show the SMT behavior of the 6-ML PdTe2 film under
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perpendicular field. During the SMT, the RsðTÞ curve at
1.8 T exhibits a plateau in a relatively large temperature
regime at ultralow temperatures, corresponding to a single
crossing point of theRsðBÞ curves below220mK.Finite size
scaling in the inset of Fig. 3(b) further demonstrates a single
value of zν around 2.65 (the absolute value of the slope of the
solid red line) between 90–220 mK (see details in Fig. S6
[16]), consistent with the quantum percolation theory
[24–26]. However, zν increases at lower temperatures below
90 mK. The above observation indicates that the character-
istics of the out-of-planeQGSdisappearwith increasing film
thickness, which very likely results from the relatively weak
quantum fluctuation and disorder in thicker films. The Ioffe-
Regel parameters are presented in Table S2 [16], revealing
relatively weak disorder in the 6-ML PdTe2 film. Inte-
restingly, the main characteristic of in-plane QGS (i.e., the
activated scaling law of zν) still persists in the same 6-ML
PdTe2 film under parallel magnetic field [Figs. 3(c)
and 3(d)]. The emergence of QGS is also confirmed by
the direct activated scaling analysis with the irrelevant
correction, as shown in the inset of Fig. 3(c) and Fig. S7.
This discordance may originate from the different micro-

scopic processes driven by disorder under different mag-
netic field orientations. Under perpendicular magnetic

field, the disorder effect can deform the vortex lattice
and give rise to a vortex glasslike phase, where the large
superconducting rare regions lead to the divergence of
critical exponent zν. Compared to the QGS under
perpendicular field, the different thickness dependent
behavior as well as the absence of vortices in ultrathin
2D systems indicates a new mechanism of in-plane QGS.
The mechanism of QGS without vortex has been theoreti-
cally revealed in superconducting nanowires, which can be
extended to 2D superconductors [27]. Moreover, the ultra-
thin crystalline PdTe2 films are type-II Ising superconduc-
tors with strong SOC [20,28]. The threefold rotational
symmetry of PdTe2 films makes the effective field of
Zeeman-type SOC along the out-of-plane direction,
which protects the superconductivity under the large in-
plane magnetic field. The in-plane critical field of PdTe2
films depends on the effective Zeeman-type SOC gβSO ¼
βSO=½1þ ℏ=ð2πkBTcτ0Þ� [20,29]. Here, βSO is the strength
of Zeeman-type SOC, τ0 is the mean free time for spin-
independent scattering, and Tc is the superconducting
critical temperature. Because of the different local disorder
strength with different value of τ0, the local effective SOC
gβSO varies with location. When the in-plane magnetic field
is near the mean-field critical field, the regions with
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relatively large disorder are easier to lose superconductivity
and form the normal state, while the others keep super-
conducting and form the rare regions. The formation of rare
regions under parallel field may give rise to the in-plane
QGS. The disorder on the film surface and the interface
between the film and the substrate may play a more
important role in thinner films. Besides, the strain due to
lattice mismatch between the film and substrate may lead to
lattice distortion and finally contribute to the strength of
disorder [30]. With decreasing film thickness, the strain is
enhanced and thus the disorder strength is increased.
In conclusion, we systematically investigate the SMT

behavior of ultrathin crystalline PdTe2 films. Intriguingly,
the QGS is observed in 4-ML PdTe2 film under both
perpendicular and parallel magnetic fields. The evidence of
QGS is also provided by a direct activated scaling analysis.
With increasing film thickness, the out-of-plane QGS
disappears while the in-plane QGS still exists in the 6-
ML PdTe2 film, indicating a new microscopic mechanism
for the in-plane QGS. Our findings shed new light on the
formation of QGS and inspire further investigations on the
quantum phase transition under parallel magnetic field.
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