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Polycrystalline solids can exhibit material properties that differ significantly from those of equivalent
single-crystal samples, in part, because of a spontaneous redistribution of mobile point defects into so-
called space-charge regions adjacent to grain boundaries. The general analytical form of these space-charge
regions is known only in the dilute limit, where defect-defect correlations can be neglected. Using kinetic
Monte Carlo simulations of a three-dimensional Coulomb lattice gas, we show that grain boundary space-
charge regions in nondilute solid electrolytes exhibit overscreening—damped oscillatory space-charge
profiles—and underscreening—decay lengths that are longer than the corresponding Debye length and that
increase with increasing defect-defect interaction strength. Overscreening and underscreening are known
phenomena in concentrated liquid electrolytes, and the observation of functionally analogous behavior in
solid electrolyte space-charge regions suggests that the same underlying physics drives behavior in both
classes of systems. We therefore expect theoretical approaches developed to study nondilute liquid
electrolytes to be equally applicable to future studies of solid electrolytes.
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Predicting the equilibrium distribution of charged ions
within crystalline solids at, or near, structural discontinu-
ities such as grain boundaries or heterointerfaces is a long-
standing problem in solid-state physics [1–6]. Within these
near-interface regions, the concentration of individual ionic
species can deviate significantly from their formal bulk
values, giving rise to so-called “space-charge” regions. The
spatial profiles of space-charge regions are particularly
significant in solid electrolytes [7,8] such as those used in
solid-oxide fuel cells and all–solid-state lithium ion bat-
teries [5,6,9,10]. In these cases, a local decrease in the
concentration of the charge-carrying mobile ionic species
within a space-charge region is expected to contribute
to interfacial resistance and decreased device perfor-
mance [7,11,12].
The classic treatment of space-charge formation in solid

electrolytes considers the distribution of mobile ions in
terms of charge-carrying point defects—typically intersti-
tials or vacancies—that behave as an ideal gas interacting
only through mean-field electrostatics [7]. For this simple

model, the equilibrium defect distribution perpendicular to
the grain boundary interface can be found by solving the
one-dimensional Poisson-Boltzmann equation. For low
space-charge potentials [13], the approximate linearized
Poisson-Boltzmann equation can be used, which has a
general analytical solution; the resulting space-charge
profiles decay exponentially toward the asymptotic bulk
defect concentration with a characteristic decay length
equal to the Debye length λD:

λD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0εrkBTP
iðzieÞ2ci

s
; ð1Þ

where ε0 is the vacuum permittivity, εr is the relative
permittivity of the solid, kB is the Boltzmann constant, T is
the temperature, zi are the charged species’ valences, e is
the elementary charge, and ci are the bulk charged defect
concentrations. For high space-charge potentials, the full
nonlinear Poisson-Boltzmann equation must be solved,
either numerically or by making further approximations
to obtain an approximate analytical result [14]. Space-
charge profiles for high space-charge potentials again
decay monotonically, exhibiting superexponential decay
close to the grain boundary, converging to exponential
decay with decay length λD at larger distances.
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This ideal-gas plus mean-field–electrostatics model of
space-charge behavior is valid only in the dilute limit of low
defect density or high relative permittivity, i.e., weak
electrostatic coupling. To address this limitation, a number
of more complex one-dimensional models have been
proposed that aim to describe space-charge behavior under
nondilute conditions [10,14–18]. These models extend the
simple model described above by including additional
nonideal local or nonlocal defect chemical potential terms.
The equilibrium space-charge profile is then computed by
minimizing the global free energy as a function of the one-
dimensional defect concentration. These extended models
can give complex nonexponential or even nonmonotonic
space-charge profiles, although the exact functional form of
the resulting profile depends on the choice of nonideal
chemical potential terms and their parameterization.
As is the case for the classic space-charge model, these

nondilute space-charge models solve a one-dimensional
problem defined in terms of the mobile-defect density
perpendicular to the interfacial plane. Each point in this
one-dimensional density can be considered a planar aver-
age from some corresponding implicit three-dimensional
defect distribution; the full three-dimensional distribution
of mobile defects within the solid-electrolyte host, how-
ever, is never explicitly calculated. As a consequence,
defect-defect correlations, which become increasingly
important with increasing defect concentration or decreas-
ing relative permittivity, are not explicitly computed.
Instead, the effect of these correlations is approximated
through the choice of nonideal defect chemical potential
terms used in each model.
Here, we follow a different approach to modeling solid-

electrolyte space-charge profiles. Instead of solving an
effective one-dimensional problem, we consider an explicit
three-dimensional Hamiltonian for point charges in a
system with a single grain boundary. We then sample
the configuration space of this model, using kinetic
Monte Carlo, and construct space-charge profiles as time
averages over specific simulation trajectories. Because this
approach treats defect-defect interactions explicitly in
three-dimensional space, any defect-defect correlations
emerge directly from the simulation trajectories, avoiding
the need to describe these correlations through analytical
free-energy terms.
We find that in nondilute solid electrolytes (high defect

concentrations) or for strong defect-defect interactions (low
relative permittivities) grain-boundary–adjacent space-
charge profiles have a qualitatively different functional
form to the monotonic decay predicted by classic space-
charge theory. We observe damped oscillatory space-charge
profiles that can be well described by a simple analytical
function. We also observe space-charge decay lengths that
are significantly larger than the corresponding Debye
length and that increase with increasing defect concen-
tration or defect-defect interaction strength (decreasing

relative permittivity), giving the opposite behavior to that
predicted by dilute-limit models. The deviation of space-
charge decay length from the Debye length is shown to
follow a universal scaling law as a function of electrostatic
coupling strength. We note that analogous phenomena
have been previously reported for concentrated liquid
electrolytes, which suggests that the same underlying
physics drives emergent behavior in solid electrolytes as
in their liquid counterparts. Finally, we comment on the
implications of these results for a possible unified theo-
retical framework for understanding nondilute electrolyte
behavior in both liquids and solids.
Methods.—Our computational model consists of a 3D-

periodic simple-cubic lattice ofm ×m ×m sites, populated
by a fixed number, N, of mobile point defects with þ1
charge (Fig. 1). To ensure our model has net zero charge,
we include a uniform array of δ− point charges located at
the cube-center–interstitial positions, with δ− ¼ −N=m3.
The mobile defects and their countercharges interact
through point-charge electrostatics, which we scale by a
relative permittivity εr. This Coulomb lattice-gas model has
historically been well studied as a bulk system [19],
particularly in the context of the classical one-component
plasma [20,21]. To model the segregation of mobile defects
to a grain boundary, we assign one plane of sites an on-site
occupation energy of −Egb; this term represents the differ-
ence in standard chemical potential or “segregation energy”
for defects in the grain boundary core relative to the bulk.
All sites outside the grain boundary core have on-site
energies of zero.
Our kinetic Monte Carlo simulations were performed

using the KMC_FMM code, which implements the accurate

FIG. 1. Two-dimensional schematic of the kinetic Monte Carlo
model used in this work. Lattice sites (circles) are either vacant
(dashed circles) or occupied by positively charged “defects”
(solid green circles). Arrows indicate allowed site-site moves.
Interstitial positions are assigned partial negative charges. All
lattice sites in the central plane (yellow) are assigned an on-site
occupation energy of −Egb.
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and optimally scaling electrostatic solver described in
Ref. [22] using the PPMD framework [23]. All simulations
were performed using a 75 × 75 × 75 simple-cubic lattice
of sites, with three-dimensional periodic boundary con-
ditions. The nearest-neighbour mobile-site spacing, l, is
2.5 Å, which approximates the typical lattice spacing of a
solid electrolyte. For all simulations, we set the on-site
occupation energy for the grain boundary plane as −Egb ¼
−0.05 eV. Simulations were run at 300 K. Each individual
simulation was initialized with a random distribution of
mobile charges and run for a total of 1.5 × 106 steps. The
initial 500 000 steps were discarded to allow for equili-
bration, and space-charge profiles were computed as a time
average over the subsequent 1 × 106 steps. For each combi-
nation of relative permittivity, εr, and bulk concentration,
c∞, we performed between 30 and 100 simulations to
obtain statistically converged space-charge profiles. To
characterize and quantify the simulated space-charge pro-
files, we performed maximum likelihood sampling, param-
eter posterior sampling, and Bayesian model selection for
competing functional forms using the URAVU Python
package [24]. The posterior distributions and Bayesian
evidence for specific functional models were found by
nested sampling [25], implemented in URAVU using the
DYNESTY package [26]. Further details are given in the
Supplemental Material [27].
Results.—We first consider simulated space-charge pro-

files obtained for n∞ ¼ 0.005, where n∞ ¼ l3c∞ is the bulk
per-site number density of mobile defects, and εr ¼ 100,
10, and 1 (Fig. 2), which spans the range of relative
permittivities for typical solid electrolytes [10]. At higher
values of εr, the electrostatic interaction between the
mobile defects is more effectively screened, and each
model will more closely approximate the noninteracting

(dilute) ideal lattice-gas limit. Conversely, as εr is
decreased, the electrostatic interactions between mobile
defects become stronger and nonideal defect-defect corre-
lations are expected to become more significant.
For the highest permittivity considered here (εr ¼ 100),

we obtain a monotonically decaying space-charge profile
[Fig. 2(a)] that is qualitatively consistent with the dilute-
limit behavior predicted by the classic Poisson-Boltzmann
model. More precisely, the simulated space-charge profile
is well described by an exponentially decaying function,

nðxÞ ¼ n∞ þ A expð−αxÞ; ð2Þ
where nðxÞ is the planar-average defect number density, n∞
is the bulk defect number density, and α ¼ 1=λsys, with λsys
the observed characteristic decay length. At lower permit-
tivities, the simulated space-charge profiles are no longer
monotonic [Fig. 2(b)] andare thereforenot evenqualitatively
well-described by Eq. (2). We instead observe oscillatory
behavior that decays into the bulk. Further decreases in εr
cause both the magnitude of these oscillations and the
distance over which they decay to increase [Fig. 2(c)].
The appearance of oscillations at higher defect-defect

interaction strengths (decreasing εr) mirrors the behavior of
nondilute liquid electrolytes and ionic liquids, which
exhibit similar oscillatory charge profiles at electrified
interfaces, where this phenomenon is termed “overscreen-
ing” [30]. Oscillatory local order has also been observed in
previous bulk Coulomb lattice-gas and one-component
plasma simulations [20,21,31]. By analogy to the analyti-
cally known behavior of liquid systems [32,33], we
propose a damped oscillatory ansatz for the space-charge
profiles in this low-permittivity regime:

nðxÞ ¼ n∞ þ A expð−αxÞ cosðξxþ θÞ: ð3Þ

FIG. 2. One-dimensional time-averaged mobile-defect distributions for n∞ ¼ 0.005 and relative permittivities (a) εr ¼ 100,
(b) εr ¼ 10, and (c) εr ¼ 1. On each plot, x ¼ 0 corresponds to the grain boundary plane. For each set of simulation data, we
also plot the maximum likelihood exponential and oscillatory models (Eqs. (2) and (3), respectively). Error bars show a 95% confidence
interval around each point (errors are smaller than the symbols). Plots showing these data on a semilogarithmic scale are provided in the
Supplemental Material [27]. Source: Raw simulation data and scripts to generate this figure are available under CC BY 4.0/MIT licenses
as Ref. [29].
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As shown in Figs. 2(b) and 2(c), this oscillatory functional
form gives a significantly better description of these
space-charge profiles at low permittivities than the
dilute-limit monotonic (purely exponential) model [34].
The simulated space-charge profiles presented in Fig. 2

also show increasing space-charge widths—i.e., increased
decay lengths—with decreasing relative permittivities.
This is the opposite behavior to that predicted by the
classic space-charge treatment, wherein the Debye length
decreases with decreasing εr [Eq. (1)]. The observation of a
decay length that is larger than the classical Debye length
again mirrors the behavior of concentrated liquid electro-
lytes, where this phenomenon is termed “underscreening”
[32,33,36].
In ionic liquids and concentrated liquid electrolytes,

underscreening has been found to follow scaling laws of the
form

�
λsys
λD

�
∝
�
d
λD

�
ν

; ð4Þ

where λsys is the observed decay length of the system, d is
the diameter of the charged species, and ν is a fixed scaling
factor [37–40]. For our Coulomb lattice-gas model, there is
no direct analog for d. We instead analyze our simulation
data by plotting ln ðλsys=λDÞ versus lnðΓÞ, where Γ is a
dimensionless parameter that describes the strength of
electrostatic coupling in a given system. Γ ¼ λB=a, where
λB ¼ e2=ð4πε0εrkBTÞ is the Bjerrum length, and a ¼
½3=ð4πc∞Þ�1=3 is a Wigner-Seitz defect-sphere radius
[20,21,41]. Further discussion of the choice of an appro-
priate scaling parameter is provided in the Supplemental
Material [27].
Figure 3 shows ln ðλsys=λDÞ versus lnðΓÞ plotted for

simulations at four bulk concentrations corresponding to
n∞ ¼ 0.000 25, 0.000 5, 0.001, and 0.005. For each sim-
ulation, we use Bayesian model selection to select which
model—purely exponential or damped oscillatory—is best
supported by the simulated space-charge–profile data and
assign λsys ¼ 1=α. For lnðΓÞ > 0.4, we find analogous
scaling behavior to that reported for liquid systems
[32,39,40,42], i.e., λsys=λD ∝ Γν, with ν ¼ 1.087� 0.005
(95% CI). For a given bulk concentration of mobile defects,
higher values of Γ correspond to stronger defect-defect
interactions, i.e., decreased εr. In this regime, as defect-
defect interactions increase in magnitude, the observed
decay length increasingly positively deviates from the
Debye length. For lnðΓÞ < 0.4, we observe a region where
the observed screening length is smaller than the Debye
length. Again, this behavior has been reported for liquid
systems in studies that focus on the application of different
closure relationships to the Ornstein-Zernike equation
[37,39,42–49]. At the lowest values of Γ (≈ 0.25, obtained
for n∞ ¼ 0.000 25 and εr ¼ 100) we recover the low-
potential dilute-limit result that the simulated decay length

is equal to the Debye length, i.e., λsys ¼ λD. We note that
the same scaling behavior is observed for all four simulated
concentrations, suggesting a universal scaling law operates
in solid electrolytes that contain a single mobile-defect
species.
Summary and Discussion.—We have performed kinetic

Monte Carlo simulations of populations of mobile point
defects on a three-dimensional lattice, interacting via point-
charge electrostatics, as a simple model for space-charge
formation at solid-electrolyte grain boundaries, for a range
of bulk defect concentrations and relative permittivities. For
dilute, weakly coupled systems (low particle concentration
and high εr), we recover the behavior predicted by classic
treatments of space-charge behavior, i.e., the linearized
Poisson-Boltzmann model—the space-charge profile
decays exponentially to the asymptotic bulk value with a
decay length equal to the Debye length λD. In nondilute,
strongly coupled systems (high particle concentration or
low εr), we observe damped oscillatory space-charge
profiles—overscreening—and space-charge decay lengths
that are larger than the corresponding Debye length—
underscreening.
Overscreening and underscreening are known phenom-

ena for nondilute liquid systems of charged particles
(concentrated liquid electrolytes and ionic liquids)
[30,32,33,38,50–57]. Our simulations predict not only that

FIG. 3. Log-log plot of scaled simulated decay length
λsys=λD ¼ 1=ðαλDÞ versus Γ ¼ λB=a for simulations performed
at four different defect concentrations. The diagonal dashed line
shows the maximum likelihood estimate for Eq. (4) in the
underscreening regime. Open and closed circles correspond to
space-charge profiles that best support the pure exponential decay
model [Eq. (2)] or the oscillatory decay model [Eq. (3)],
respectively, as determined through Bayesian model selection
(see the Supplemental Material [27] for details). Error bars show
95% confidence intervals for λsys=λD. Source: Raw simulation
data and scripts to generate this figure are available under CC BY
4.0/MIT licenses as Ref. [29].
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overscreening and underscreening also occur in nondilute
solid electrolytes, but that these phenomena have the same
functional behavior in solids as in analogous liquid
systems. Space-charge profiles in systems that exhibit
overscreening are well-described by a damped oscillatory
function and the degree of underscreening, given by the
ratio of the observed space-charge decay length to the
classic Debye length, follows an apparently universal
scaling law above some critical effective defect-defect
interaction strength. We also predict an intermediate
regime, where the simulated space-charge decay length
is smaller than the classic Debye length. Again, this mirrors
previous results obtained for the decay of radial distribution
functions in nondilute liquid systems [37,39,42,49]. Our
results also suggest an approximate empirical threshold for
when the dilute-limit classic space-charge treatment may be
reliably used to quantitatively model space-charge behavior
in solid electrolytes of Γ ¼ λB=a ⪅ 0.25.
The strong correspondence between our results for

space-charge formation at a grain boundary in a model
solid electrolyte and those previously reported for liquid
electrolytes at an electrified interface suggests that the same
underlying physics is responsible for these analogous
emergent phenomena in both liquid and solid electrolytes.
This suggests that many of the theoretical methods that
have been developed previously by researchers seeking to
better understand the behavior of liquid electrolytes, or
analogous models such as the one-component plasma
[20,21], may be equally applicable to developing an
improved understanding of the emergent behavior of
ensembles of mobile charged defects in solid electrolytes.
Our results also present some intriguing differences with

respect to previous studies of nondilute liquid systems. Our
model contains a single mobile-defect species, while
studies of liquid systems generally consider symmetric
1∶1 electrolytes. Previous studies of liquid systems have
attempted to explain ion-ion correlations and related
phenomena such as overscreening in terms of ion pairing
or clustering of oppositely charged ions [32,58,59]. The
model presented here, however, is not charge-symmetric,
and our results therefore show that charge symmetry or ion
pairing are not necessary conditions for overscreening and
underscreening to occur. We also observe a different
scaling law for the ratio λsys=λD to that reported for liquids.
In liquid systems, this scaling depends on the mean ion
diameter [37–40]. In our solid-electrolyte model, there is no
analogous “defect diameter” term; the Wigner-Seitz radius
is independent of the identity of the mobile-defect species
being considered [20,21,41]. We therefore hope that the
results presented here will encourage new discussion about
the origin of these empirical scaling laws in liquids in
addition to our primary observation that these phenomena
are also relevant in solid-state systems.
The simple grain boundary model that we have used in

this work makes similar simplifying approximations to

those often used in conventional one-dimensional
Poisson-Boltzmann or global–free-energy treatments of
grain boundary space-charge formation: all positions
within the bulk crystal are energetically equivalent and
the grain boundary is modeled by a uniform plane of
sites [14,60–62]. Real solid electrolytes, of course, are
chemically and structurally more complex. For example,
immobile point defects in the bulk can affect the potential
energies of mobile ions nearby [63,64], while grain
boundaries can have a range of nonzero segregation
energies that extend over several atomic layers
[11,65,66]. Interactions between mobile defects may also
be more complex than the simple point-charge interaction
considered here; in some materials higher-order electro-
static terms or lattice-strain–mediated interactions may be
significant at short defect-defect separations [67,68].
Accurate quantitative predictions of space-charge profiles,
therefore, require the development of more detailed
treatments, with one prospective route being extended
Hamiltonian-based models that can be directly parame-
terized from first-principles calculations. While under-
standing the effect of these, and other, factors in real
materials provides considerable scope for future inves-
tigation, we expect point-charge-like electrostatics to
capture much of the physics of real systems, and there-
fore expect the qualitative asymptotic behaviors predicted
here—damped oscillatory space-charge profiles with
decay lengths significantly longer than the Debye
length—to be present in a wide range of real-world
solid electrolytes.
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Note added.—A dataset containing the full set of time-
averaged simulation data that support the findings pre-
sented here and the analysis code used to generate Figs. 2
and 3 is available as Ref. [29] under the CC BY 4.0 and
MIT licenses.
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