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Viscoelastic plane Poiseuille flow is shown to become linearly unstable in the absence of inertia, in the
limit of high elasticities, for ultradilute polymer solutions. While inertialess elastic instabilities have been
predicted for curvilinear shear flows, this is the first ever report of a purely elastic linear instability in a
rectilinear shear flow. The novel instability continues up to a Reynolds number (Re) of Oð1000Þ,
corresponding to the recently identified elasto-inertial turbulent state believed to underlie the maximum-
drag-reduced regime. Thus, for highly elastic ultradilute polymer solutions, a single linearly unstable modal
branch may underlie transition to elastic turbulence at zero Re and to elasto-inertial turbulence at moderate
Re, implying the existence of continuous pathways connecting the turbulent states to each other and to the
laminar base state.
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Dilute polymer solutions undergo two different transitions
to novel turbulent states, both driven by viscoelasticity, and
thence, fundamentally distinct from the now well-under-
stood Newtonian transition [1–3]. Pipe and channel flows of
sufficiently elastic polymer solutions transition from the
laminar state at Reynolds numbers substantially lower than
the typical Newtonian threshold, the ensuing flow state
dubbed elasto-inertial turbulence (EIT) to emphasize the
importance of both elastic and inertial effects underlying the
turbulent dynamics [4–10]. The EIT state is dominated by
spanwise oriented 2D structures [8,11] in sharp contrast to
the Newtonian scenario [2], and for plane Poiseuille flow,
has recently been shown [12,13] to be connected subcriti-
cally to a linear center-mode instability [14–16]; recent pipe-
flow experiments have, in fact, found remarkable agreement
between the observed structures at EIT onset [7] and the
center-mode eigenfunction [14,15]. On the other hand,
curvilinear shearing flows of dilute polymer solutions
transition to elastic turbulence (ET) in the inertialess limit
[17–19], the transition being triggered by a hoop-stress-
driven linear instability [20–27]; the eventual disorderly ET
state that arises has been well characterized experimentally
[17,18,27] and, to a limited extent, theoretically as well [28].
Unlike their curvilinear counterparts, inertialess recti-

linear shear flows of dilute polymer solutions have hitherto
been regarded as linearly stable [29–31]. Transition in these
flows has been proposed to occur via a subcritical mecha-
nism, but one that nevertheless involves a hoop stress
that now arises at a nonlinear order due to the curvature of
the perturbed streamlines [32–36]. There is some exper-
imental evidence of an inertialess finite-amplitude transi-
tion [32,37–39] to what might be an ET state similar to that
observed for curvilinear flows; the absence of a linear

instability has also motivated examination of nonmodal
growth mechanisms, both in the absence [40,41] and
presence [42] of inertia. The aforementioned EIT and ET
states might seem unrelated at first sight, on account of
fluid inertia playing a fundamental role in the former, while
being irrelevant in the latter. It has nevertheless been
speculated [4,7,12,19,39] that the two states may be linked,
although there exist no concrete hypotheses or proposals in
this regard.
In this Letter, we show that (i) pressure-driven visco-

elastic channel flow is linearly unstable even in the absence
of inertia, making this the first ever report of a purely elastic
linear instability not dependent on base-state streamline
curvature; (ii) the instability smoothly continues, with
increasing Reynolds number (Re), to the aforementioned
elasto-inertial linear instability [14,16]. Since the latter
instability has been shown to subcritically continue to
nonlinear elasto-inertial coherent structures [12,13], the
implication is the existence of a continuous pathway (the
underlying unstable modal branch) connecting the EIT and
ET states, one that might provide a template for nonlinear
coherent structures acting as possible bridges between these
states, thereby forming the framework for a dynamical-
systems-based interpretation of turbulence outside the
Newtonian realm.
We consider pressure-driven flow of an incompressible

viscoelastic fluid in a channel of width 2H. The governing
mass and momentum equations [43,44], in dimensionless
form, are

∇·u¼0; Re

�∂u
∂t þðu·∇Þu

�
¼−∇pþβ∇2uþ∇·τ; ð1Þ
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where u, p, and τ, are the velocity, pressure, and the
polymer stress fields, respectively. Here, lengths are non-
dimensionalized using the channel half-width H, velocities
using the base-flow maximum Umax, and τ is governed by
the Oldroyd-B constitutive relation

τ þW

�∂τ
∂t þ ðu·∇Þτ − ð∇uÞT ·τ − τ·ð∇uÞ

�

¼ ð1 − βÞð∇uþ ∇uTÞ: ð2Þ

The relevant dimensionless groups are the Reynolds
number Re ¼ ρUmaxH=η (ρ and η being the density and
viscosity of the polymer solution, respectively), the ratio of
solvent to solution viscosities β, and the Weissenberg
number W ¼ λUmax=H, where λ is the polymer relaxation
time; below, we also use the elasticity number E ¼ W=Re
in lieu of W. The Oldroyd-B model regards the polymer
molecules as noninteracting Hookean dumbbells, resulting
in a shear-rate-independent viscosity and first normal
stress coefficient in viscometric flows, and has been
successfully used to predict linear and nonlinear instabil-
ities in rectilinear [14,34,45] and both curvilinear visco-
metric [20,21,23] and nonviscometric [46] flows. For
plane Poiseuille flow, whose stability is examined here,
the laminar state is given by UðzÞ ¼ ð1 − z2Þ, with a first
normal stress difference Txx − Tzz ¼ 8ð1 − βÞW2z2. We
analyze its temporal stability by imposing infinitesimal
2D perturbations (justified by Squire’s theorem [47])
to any dynamical variable, f0ðx; z; tÞ, of the form
f0ðx; z; tÞ ¼ f̃ðzÞ exp½ikðx − ctÞ�, where f̃ðzÞ is the
eigenfunction, k is the streamwise wave number, and c ¼
cr þ ici is the complex wave speed, with the flow being
temporally unstable when ci > 0. Linearization results in a
generalized eigenvalue problem [16,45] that is solved using
spectral collocation and shooting methods, both of which
have been extensively benchmarked [15,16,48].
We first consider the creeping-flow limit (Re ¼ 0) where

the relevant dimensionless groups are W and β. In the
absence of the solvent [β ¼ 0; the upper-convected
Maxwell (UCM) limit], the inertialess plane Poiseuille
eigenspectrum is known [31] to contain six discrete modes
for W; k ∼Oð1Þ, in addition to the continuous spectrum
(CS). As W is increased for a fixed k ∼Oð1Þ [or k is
increased at a fixed W ∼Oð1Þ], two of the modes merge
into the CS, while two transition into “wall modes.” The
remaining two transition into “center modes” with phase
speeds approaching the base-flow maximum. Regardless of
W and k, however, plane Poiseuille flow of a UCM fluid
remains stable [31]. For β ≠ 0, the number of discrete
modes depends on β, k, and W. For ultradilute solutions
with β > 0.99, there are two center modes out of a total of
five discrete modes forW ∼Oð103Þ and higher (see Fig. 1).
Interestingly, for β > 0.9905, at sufficiently high
W ∼ 2500, one of the two center modes becomes unstable

(inset A of Fig. 1; also see the Supplemental Material [49]).
The instability runs counter to the prevailing view [31], and
the unexpected destabilizing role of the solvent viscosity is
similar to the recently discovered elasto-inertial center-
mode instability [14–16].
The regimeW ∼Oð103Þ, β > 0.99 corresponds to highly

elastic ultradilute polymer solutions (with concentrations
around 1% of the overlap value), one that was not explored
in earlier theoretical work [31], but has been shown to be
experimentally accessible in microscale flows [50–53].
Nevertheless, a concern arising from the largeW’s involved
is the applicability of a simplified dumbbell approximation
for the actual polymer molecules; earlier efforts [54–56]
point to the need for more detailed microscopic models to
faithfully capture the dynamics in the strongly nonlinear
regime [57]. In this regard, it is worth noting that the recent
effort of Buza et al. [58] has used the finitely extensible
nonlinear elastic model with Peterlin closure (FENE-P)
model to show that the Oldoyrd-B-based instability pre-
dicted here persists down to W ∼Oð100Þ, allowing for a
more concrete connection with experiments.
Neutral curves demarcate unstable “tongues” in the W-k

plane (Fig. 2), with the tongues ceasing to exist beyond a
critical k and below a thresholdW. However, the instability
continues to exist at arbitrarily small k, with W ∼ 1=k for
k ≪ 1 along both the branches of the tongue. A plot of Wc
(the minimum W along a neutral curve) with (1 − β) (inset
B of Fig. 2) shows that the lowest Wc is ∼973.8 for
β ¼ 0.994, and that Wc ∝ ð1 − βÞ−1, kc ∼Oð1Þ for β → 1;
expectedly, Wð1 − βÞk is the threshold parameter for
k; ð1 − βÞ ≪ 1; see inset A of Fig. 2 and [59]. The
instability ceases to exist below β ¼ 0.9905.

FIG. 1. The inertialess plane Poiseuille spectrum of an Oldroyd-
B fluid shows five discrete modes for β ¼ 0.997, k ¼ 0.75,
W ¼ 2500, with three in the main figure and the remaining two
visible in inset A;N is the number ofChebyshev polynomials in the
spectral expansion. Inset A shows an enlarged view of the region
near the unstable center mode (“unstable CM”). Inset B shows the
variation of cr and ci with W. The detailed W dependence of the
spectra is given in the Supplemental Material [49].
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Figure 3(a) shows contour plots for the streamwise
velocity field alongside the polymeric stress eigenfunctions
in Fig. 3(b) for Wð1 − βÞ’s near the lower threshold and
close to the maximum growth rate (inset A of Fig. 2). The
instability arises due to stretched polymers being rotated
away from flow alignment by the perturbation shear, as
they are swept past by the base-state parabolic flow. The
differential rate of convection becomes small close to the
centerline, owing to the phase speed of the eigenmode
closely approaching the base-state maximum. As a result,
the time available for the perturbation-shear-induced rota-
tion (of the stretched polymers) increases, and the resulting
accumulation of perturbation elastic shear stress (τxz) drives
a reinforcing flow, leading to exponential growth. Close
to neutrality, the stress (τxx and τxz) eigenfunctions, in
particular [panel A of Fig. 3(b)], are seen to develop
singular features in an Oð1=WÞ elastic critical layer, where
the phase speed equals the local laminar velocity. The
complicated eigenfunction structure near the lower thresh-
old, as evident from the cusps close to the centerline
[see magnified view in Fig. 3(a)], arises from competing
influences of τxz (destabilizing, as mentioned above) and
τxx (stabilizing).
The results above highlight a hitherto unknown center-

mode instability in inertialess channel flow of an Oldroyd-
B fluid for β > 0.9905, whereas in earlier efforts [14–16]
we have identified a center-mode instability for Re ∼
Oð100Þ and β ∼ 0.9, both for channel and pipe flows,
and that may underlie the EIT state in these geometries
[4,5,60]. The question arises, naturally, as to whether there
is a connection between the elastic center mode identified
here and the elasto-inertial one identified in Refs. [14–16].
Figure 4 shows the critical Reynolds number Rec as a

function of Eð1 − βÞ and confirms such a connection. For
β ≤ 0.9905, the elasto-inertial instability [14] exhibits the
scaling Rec ∝ ½Eð1 − βÞ�−3=2 for Eð1 − βÞ ≪ 1, reflecting
the simultaneous importance of inertia, elasticity, and
viscous effects in a thin layer near the channel centerline
[14], with Rec increasing sharply beyond a threshold
Eð1 − βÞ. In stark contrast, for β > 0.9905, while Rec
initially decreases as ½Eð1 − βÞ�−3=2, there is an eventual
crossover to Rec ∝ ½Eð1 − βÞ�−1, with this scaling persist-
ing down to arbitrarily small Re. The Rec ∝ E−1 scaling
translates to an independence with respect to inertia and
corresponds to the creeping-flow instability identified
above, with Wð1 − βÞ being the threshold parameter.
While a connection between EIT and ET states has been
conjectured [4,12,19], and the possibility of a common
instability underlying these states speculated upon [39],
ours is the first explicit demonstration of the same.
Interestingly, an intermediate scaling regime with

Rec ∝ ½Eð1 − βÞ�−1=2 emerges for a small window of β’s

FIG. 2. Neutral curves in the W-k plane for different β’s in the
creeping-flow limit; inset A shows the collapse for β → 1 when
plotted as Wkð1 − βÞ vs k and the results obtained from the
reduced equations in that limit. Inset B shows the variation of
the critical Weissenberg number Wc and wave number kc with
(1 − β). Enlarged versions of the two insets are provided in the
Supplemental Material [49].

FIG. 3. The center-mode eigenfunctions for Wð1 − βÞ ¼ 43,
80, k ¼ 0.08 and Re ¼ 0, corresponding to neighborhood of the
lower threshold and the center of the unstable region in the
collapsed neutral curves shown in inset A of Fig. 2. The constant-
amplitude contours of the streamwise velocity are shown in
subfigure (a), while the eigenfunctions for τxz and τxx are shown
in (b). The expanded region near the centerline for panel (A) in
(a) is also shown.
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around 0.9905. In this regime, the flow velocity U ∝
f1=½ð1 − βÞ�gU0

shear, U0
shear ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffif½ηð1 − βÞ�=λρgp
being

the shear-wave speed in a quiescent fluid, pointing to an
ostensible connection with observations of waves in recent
experiments involving highly elastic polymer solutions at
large W [51,52,61]. However, elastic shear waves in
the strongly sheared laminar base state propagate with a
speed of OðE1=2UÞ [62,63], precluding any such connec-
tion. The intermediate regime is absent for β ≥ 0.997, so
there is a direct transition from Rec ∝ ½Eð1 − βÞ�−3=2 to
Rec ∝ ½Eð1 − βÞ�−1. Finally, continuity considerations
imply that the β’s where Rec increases sharply, and those
where Rec transitions to an ½Eð1 − βÞ�−1 scaling for E’s
beyond the intermediate regime, are separated by a critical
β ¼ βc (≈0.990552; see Fig 4) where, remarkably, the
aforesaid intermediate scaling persists for Re → 0, E → ∞.
Traditional research in Newtonian turbulence has been

rooted in a statistical description aiming to explain, for
instance, the subtle nature of small-scale universality at
high Re, in a homogeneous isotropic setting [64–66]. The
approach at moderate Re, especially from the perspective
of understanding transition, has, however, undergone a
paradigm shift with the advent of a dynamical systems
perspective [67,68]. For wall-bounded rectilinear shearing
flows, this latter approach is based on the dynamics of exact
coherent structures that account for both an ambient shear
and the presence of boundaries [68–72]. In contrast,
theoretical efforts aimed at understanding the effect of
elasticity on, for instance, the energy cascade in Newtonian

turbulence, mirror the statistical approach above [73,74].
For elastic turbulence, such efforts have predicted a rapid
decay, at least as fast as k−3 (k being the wave number), of
the kinetic energy spectrum pointing to the spatially smooth
character of small-scale elastic turbulent fluctuations,
an aspect that has found experimental confirmation in
curvilinear [17,18] and, to a lesser extent, in rectilinear
flows [75]; see, however, [76]. There remains a dearth of
information on the structural front primarily on account of
earlier experiments being restricted to channels with
a cross-sectional aspect ratio of unity [37–39]; recent
experiments have explored the coherent structures under-
lying the ET state in channels with high-aspect-ratio cross
sections [19,27,52,53].
Our discovery of a linear instability that spans the ETand

EIT regimes (Fig. 4) helps significantly expand the above
picture, opening up multiple avenues for future research.
A linear elastic instability, with a physical origin genuinely
different from the hoop-stress-based pathway in curvilinear
shearing flows, offers a template for novel nonlinear elastic
coherent structures that could shed light on the large-scale
dynamics of the ET state; this would complement the
aforementioned statistical approach tailored to the smallest
scales. Such an approach also offers an alternative to
prevailing efforts that analyze the elastic transition in
rectilinear shearing flows, based on a bifurcation-from-
infinity perspective [33–35], by expanding about a linearly
stable eigenmode. The physical basis of the nonlinear
expansion is intimately tied to the hoop-stress-based
mechanism that leads to a linear instability in the curvilinear
geometries. It is worth noting that these nonlinear analyses
were restricted to the β → 0 limit. As evident from Fig. 1
and the description of the eigenspectrum above (the stability
of the UCM limit, in particular), the elastic eigenspectrum is
sensitively dependent on β [49], and the validity of a β → 0
analysis, for the experimentally relevant case of dilute
solutions with β → 1, is not obvious. An expansion about,
or a numerical continuation from, the unstable eigenmode
reported here, therefore, offers access to a much larger
region in the viscoelastic parameter space comprising W,
Re, and β. The connection, at higher Re, between a
nonlinear EIT structure [12,13] and the underlying linear
eigenfunction [14], also points to the likely success of a
numerical continuation approach. Thus, nonlinear coherent
structures will likely exist over a wider range of polymer
concentrations andWeissenberg numbers than the restricted
range [β > 0.9905, W ∼Oð1000Þ] corresponding to the
actual linear instability. This expectation is reinforced by the
recent prediction [58] that the elastic instability identified in
this Letter is likely subcritical.
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