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Given a dynamical system with m independent conserved quantities, we construct a multiparameter
family of new systems in which these quantities evolve monotonically and proportionally, and are replaced
bym − 1 conserved linear combinations of themselves, with any of the original quantities as limiting cases.
The modification of the dynamics employs an exterior product of gradients of the original quantities, and
often evolves the system toward asymptotic linear dependence of these gradients in a nontrivial state. The
process both generalizes and provides additional structure to existing techniques for selective dissipation
in the literature on fluids and plasmas, nonequilibrium thermodynamics, and nonlinear controls. It may be
iterated or adapted to obtain any reduction in the degree of integrability. It may enable discovery of
extremal states, limit cycles, or solitons, and the construction of new integrable systems from super-
integrable systems. We briefly illustrate the approach by its application to the cyclic three-body Toda
lattice, driven from an aperiodic orbit toward a limit cycle.

DOI: 10.1103/PhysRevLett.127.134101

A fundamental description of classical mechanics is of a
conservative, although nonintegrable, dynamical system.
Realistically, one can only account for the behavior of an
open subsystem, whose interactions with the external world
lead to nonconservative effects. It is often of interest to
observe the time evolution of such a system when only
certain of its ideally conserved quantities are made to
change, perhaps monotonically. Modifications of dynamics,
such as the “metriplectic” and “double bracket” methods,
that selectively and monotonically violate a conservation law
have been developed in efforts toward a unified framework
for conservative and dissipative systems [1–5], including
nonequilibrium thermodynamics [6–8], from the desire to
realistically model or search for extremal states of geophysi-
cal or magnetohydrodynamic flows [9–13], and in control
and optimization settings [14,15]. In these examples, only
one quantity, such as the energy or enstrophy, is modified,
while all the others are held fixed. While it is possible to
combine multiple nonconservative terms of this type, no
clear additional structure is found in the resulting trajectories
and, presumably, if all quantities are dissipated, nothing
is conserved, and the system will be driven to a trivial
(motionless) equilibrium state.
In this note, we show that processes leading to the

limited outcome of constrained extremization of single
quantities can instead be viewed as end points of a
continuum of modified dynamical systems that preserve
as much integrability as possible of the original dynamics.
A geometrically motivated construction incorporating the
exterior product of gradients conserves m − 1 linear com-
binations of an original m independent integrals that now
evolve monotonically and proportionally, their rates given
by a set of tunable coefficients and scaling with the

hypervolume of an m-parallelotope spanned by the gra-
dients. When any of these gradients become linearly
dependent, nontrivial states of the original dynamics are
obtained. We also provide an equivalent, but very simple
and numerically convenient, linear-algebraic expression
for the modified dynamics. While writing, it came to our
attention that some aspects of our initial thought process
and construction can be seen in [16], although like other
previous approaches, this was applied to dissipate only a
single quantity and thus did not reveal the collective
phenomena and conservations we present here.
Consider a dynamics _x ¼ fðxÞ for x ∈ Rn. Let this

system admit m ≤ n independent first integrals, time-
invariant constants of the motion QiðxÞ, i ∈ f1;…; mg.
Thus, the total time derivative of any Qi vanishes,
_QiðxÞ ¼ dxQi · f ¼ 0. Now consider a modification of
the original dynamics, so that

_x ¼ fðxÞ þ d; ð1Þ

and the integrals change as

_Qi ¼ dxQi · d≡ vi · d ≠ 0: ð2Þ

For notational convenience we have denoted the m gra-
dients ∈ Rn of the m independent quantities Qi as
vi ≡ dxQi. These gradients will be linearly independent.
The vector d may be envisioned as a dissipation due to
contact with an external natural system, or as a control
input that seeks to amplify or decay x or some Qi.
It is of interest to construct a d that will selectively

amplify or dissipate one of the Qi, so that this quantity
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changes monotonically while all the others are unaffected.
Accordingly, we seek a generalization of the double cross
products of two vectors employed in [17]. To effect this
construction, we first recall the exterior (wedge) product
[18] of them vectors vi as the complete antisymmetrization
of their tensor product (here denoted in dyadic notation by
juxtaposition),

v1 ∧ v2 ∧ � � � ∧ vm ¼ 1

m!

X
σ

sgnðσÞvσð1Þvσð2Þ…vσðmÞ;

ð3Þ
with the sum taken over all possible permutations σ of
f1; 2;…; mg, each with parity sgnðσÞ. We next introduce a
contraction operation with a tensor product to form a
bracket defined as

½½Q1; Q2;…; Qm��i
¼ ðvi ∧ v1 ∧ � � � ∧ vi−1 ∧ viþ1 ∧ � � � ∧ vmÞ
·m−1ðv1…vi−1viþ1…vmÞ; ð4Þ

where the subscripted index i on the bracket indicates one
special vector from the collection of gradients, to be placed
at the left of the exterior product that will form a fully
antisymmetricm-tensor, and removed from the (m − 1)-tensor
product with which this is contracted to form a vector. The
contraction between the (m − 1) vectors on the right of the
exterior product and the entire tensor product is to be
performed inparallel, rather than reflected, order. For example,

½½Q1;Q2;Q3��2¼ðv2∧ v1∧ v3Þ∶ðv1v3Þ¼ 1
6

�h
kv1k2kv3k2−

ðv3 · v1Þ2
i
v2 þ

h
−ðv2 · v1Þkv3k2 þðv3 · v1Þðv2 ·v3Þ

i
v1þh

ðv2 ·v1Þðv1 ·v3Þ−kv1k2ðv2 ·v3Þ
i
v3
�
. The vector formed

by the bracket in Eq. (4) has the properties we seek with
regard to the quantity Qi, and appears similar to the con-
struction for dissipating the Hamiltonian in [16] defined using
Hodge stars and musical notation. We may thus construct a
complete set of dissipations

d ¼ −
Xm
i¼1

ϵi½½Q1;…; Qm��i; ð5Þ

with ϵi some constant coefficients. A little algebra shows that

_Qi ¼ vi · d ¼ −ϵiV2
m=m!; ð6Þ

where Vm is the hypervolume of the m-parallelotope
generated by the vi. We note in passing that vi ¼
ðm!=V2

mÞ½½Q1;…; Qm��i is the reciprocal vector of vi, such
that vj · vi ¼ δji . Note also that V

2
m ¼ detðfGgÞ, where fGg

is the Gram matrix [19] whose ijth entry is given by vi · vj.
Each element in the sum [Eq. (5)] acts only on a single
quantity, and clearly the corresponding ϵi coefficient can
be chosen to make the quantity Qi increase or decrease, or

change its magnitude if it is positive or negative semidefinite.
More importantly, the proportionality of the rates gives rise to
m − 1 independent equalities of the form

_Qi=ϵi ¼ _Qj=ϵj; ð7Þ

for any i and j, and thus m − 1 independent conserved
quantities as linear combinations of pairs of the original m,
generalizing the result in [17] involving a single quantity.
A convenient arbitrary choice of these constants is

Ri ≡ ðϵiþ1Qi − ϵiQiþ1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2i þ ϵ2iþ1

q
. The coefficients set

the ratios of the rates, and any of the original Qi can be
preserved by setting its associated ϵi to zero. The construction
can be iterated by, for example, treating these Ri as initial
conserved quantities, or by simply choosing some subset of
combinations of several gradients to achieve different dynam-
ics of any order of integrability. It is also possible to construct
modified dynamics without the volume factorV2

m by defining
d as a linear combination of the reciprocals vi, so that the Qi
change at constant rates. However, this leads to singular
behavior of d as the volume vanishes.
An easier numerical implementation that sidesteps theneed

for permutations, which rapidly proliferate at large m, is to
compute d by the following steps. Form a column vector ϵ
from the ϵi coefficients, and arrange the vi as columns
of a matrix fVg ¼ fv1; v2;…; vmg, such that the Gram
matrix is fGg ¼ fVgTfVg. By considering the derivative
of the determinant detðfGgÞ, one finds that the column
vector d¼−ð1=m!ÞdetðfVgTfVgÞfVgðfVgTfVgÞ−1ϵ. The
matrix fVgðfVgTfVgÞ−1 may be recognized as the right
pseudoinverse of fVgT. To avoid singularities in this expres-
sion, it may be replaced by the tamer

d ¼ −
1

m!
fVgadjðfVgTfVgÞϵ; ð8Þ

where adj indicates the adjugate (the transpose of the cofactor
matrix).
The dissipation d may vanish, restoring the original

dynamics and conserved quantities, for either of two reasons.
One is that the system has reached an extremum of any of
the modified Qi, so that one of the vi vanishes. The other is
that two or more of the vi become linearly dependent, an
outcome observed in the following examples.
An example where n ¼ 3, m ¼ 2 was considered in

detail in [17], namely the Euler equations for rigid body
rotation in terms of the three components of angular
momentum in a body-fixed frame, _L ¼ L × ωþ d, where
angular momentum L and angular velocity ω are linearly
related by a constant tensor, and d may be constructed in
terms of double cross products of these (pseudo)vectors.
In the present language, Q1 ¼ L · ω is twice the energy,
Q2 ¼ L ·L is the squared angular momentum, v1 ¼ 2ω,
and v2 ¼ 2L. The damped system is driven to align L and
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ω at a fixed point, and a conserved quantity proportional to
ϵ1Q2 − ϵ2Q1 defines a family of quadric surfaces on which
the new dynamics is confined. Although neither gradient
vanishes, any of these nontrivial states has something of an
extremal character, as it either maximizes energy for a
given squared momentum or vice versa, although neither
quantity is fixed in the dynamics.
An example where n ¼ 6, m ¼ 3 is the cyclic three-

particle one-dimensional Toda lattice, an integrable non-
linear system admitting solitons. Employing Flaschka’s
coordinates [20], the six undamped equations of motion are

_ai ¼ aiðbiþ1 − biÞ;
_bi ¼ 2ða2i − a2i−1Þ: ð9Þ

Three independent first integrals are obtained [20] from
invariants of the Lax matrix

flg ¼
8<
:

b1 a1 a3
a1 b2 a2
a3 a2 b3

9=
;; ð10Þ

namely, Q1 ¼ trðflgÞ,Q2 ¼ trðflg2Þ, and Q3 ¼ trðflg3Þ,
where tr is the trace operation. The quantity Q2 is propor-
tional to the energy. This system is actually superintegrable,
admitting additional constants of the motion beyond the
three considered here [21], but presumably our modified
dynamics will violate these while creating two integrals
from the explicitly considered original three. We note that,
unlike the original system [Eq. (9)], our modified dynamics
allow for unphysical zero-crossings of the ai, so in general
some care may be required either in choosing variables or
defining the dissipations.
The evolution of the original and modified system is

shown in Fig. 1 for a particular choice of initial conditions
and dissipations. Without damping, the trajectories appear

low-dimensional and weakly aperiodic, possibly quasiperi-
odic. Addition of damping drives the system toward a limit
cycle in which the three original quantities take on new
steady values, and the three gradients are linearly dependent.
Note that Q1 defines a plane in b-space; both the original
trajectory and the limit cycle lie on different parallel planes
in this subspace. In this example, v1 is actually a constant
and so cannot shrink or realign, but v2 and v3 evolve such
that the volume of the parallelepiped generated by the vi
shrinks rapidly to zero. While the changes in the Qi are
monotonic by construction, that of the volume is not.
The extension to three conserved quantities illustrates an

interesting point, in that it is not pairwise or groupwise
alignment that is induced by the dissipation, but linear
dependence, here in the form of coplanarity. This can
be gleaned from the various evolutions shown in Fig. 2.
The magnitudes of the vi change very little, and there is no
pairwise alignment, as seen from the cosines cos θij≡
vi · vj=ðkvikkvjkÞ, none of which are driven to unity. Thus,
the rapid change in volume Vm comes from a collective
linear dependence of all three vectors.
In general, while a system can return to its unmodified

form by approaching an extremum characterized by a
vanishing gradient, the restoring outcomes we often tend
to observe are instead the result of the degeneration of the
m-parallelotope into a linearly dependent set of gradients
spanning an (m − 1)-dimensional subspace. At this point
one can construct a new set ofm − 2 gradients from the old,
and start a new process. When only one gradient remains,
the dissipation process affects all quantities and can only
halt by reaching an extremal point where this gradient
vanishes. We reiterate that the modified dynamics need not
be constrained to decay terms, but can include amplifica-
tion of any number of the original quantities.
When m ¼ 2, the linear dependence simply corresponds

to the alignment of two vectors, as in damped rigid body
rotation [17] or the Beltramization of fluid flows under
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FIG. 1. Trajectories of the six Flaschka variables for the cyclic three-body Toda lattice [Eq. (9)] (gray) and the modified
system with ðϵ1; ϵ2; ϵ3Þ ¼ ð0.075; 0.05; 0.025Þ (black) up to 1000 time units. Initial conditions are ða1; a2; a3; b1; b2; b3Þ ¼
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selective energy dissipation [9]. In the rigid body, align-
ment also corresponds to extrema of one quantity on the
particular final level sets reached. It is an interesting
question whether this latter property has any generalization
to other systems, particularly those with m > 2.
The bracket in Eq. (4) can be rearranged and interpreted

as a linear operator acting on the subscripted gradient, to
facilitate comparison with other forms inspired by thermo-
dynamics [3,7], with Eq. (8) perhaps providing a more
convenient access point than Eq. (5). For example, the
particular bracket written explicitly earlier is of the form

½½Q1;Q2;Q3��2¼ 1
6

�h
kv1k2kv3k2−ðv3 ·v1Þ2

i
I−

h
kv3k2v1−

ðv1 ·v3Þv3
i
v1−

h
kv1k2v3−ðv3 ·v1Þv1

i
v3
�
·v2, where I is

the n-dimensional identity. It is illustrative to compare
this with a corresponding term that simply projects the
gradient so as to remove any components that would
act on other quantities, a process analogous to the con-
struction of the bilinear metriplectic bracket [3],
ðI − kv1k−2v1v1 − kv3k−2v3v3Þ · v2. The difference in
weights is important, as a combination of projective
terms will not conserve any quantities, and will drive the
system toward a trivial equilibrium (as may be easily
confirmed by its application to a system such as the
Toda example above), while the exterior dissipative mecha-
nism conserves a number of quantities less by 1 than the
original system.
As a tool of discovery, this process of modifying

dynamics should be useful in the construction of new

integrable systems or the search for nontrivial states of
known systems. Given further information about a particular
system to be modified, the process is also potentially a tool
of control with which to set not only the rates, but the overall
values of the original quantities, or steer the trajectory of
the system toward particular states. Future avenues that
immediately suggest themselves include extensions to
curved spaces, integrable partial differential equations, and
discrete-time dynamics.
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