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We show that axions interacting with Abelian gauge fields obtain a potential from loops of magnetic
monopoles. This is a consequence of the Witten effect: the axion field causes the monopoles to acquire an
electric charge and alters their energy spectrum. The axion potential can also be understood as a type of
instanton effect due to a Euclidean monopole worldline winding around its dyon collective coordinate. We
calculate this effect, which has features in common with both non-Abelian instantons and Euclidean brane
instantons. To provide consistency checks, we argue that this axion potential vanishes in the presence of a
massless charged fermion and that it is robust against the presence of higher-derivative corrections in the
effective Lagrangian. Finally, as a first step toward connecting with particle phenomenology and
cosmology, we discuss the regime in which this potential is important in determining the dark matter
relic abundance in a hidden sector containing an Abelian gauge group, monopoles, and axions.
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Introduction.—Axions are naturally light scalar bosons
that are of great interest in solving the strong CP problem
[1–4], as dark matter candidates [5–7], and for many other
applications. It is well known that instanton effects can
generate a potential for an axion θ [3,4] when it is coupled
to a non-Abelian gauge field via the topological coupling
θtrðF ∧ FÞ. Even in the absence of axion interactions with
gauge fields, it is known that Euclidean branes can give rise
to axion potentials [8–12]. Here, we argue that axions
coupled to Abelian gauge fields through a θF ∧ F coupling
acquire a potential through an instanton effect whenever
there are monopoles magnetically charged under F, due to
the Witten effect [13]. Like non-Abelian instantons, these
effects are associated with 4D gauge theory dynamics. Like
Euclidean branes, they occur within a well-behaved semi-
classical expansion free of infrared divergences. In fact, we
expect that our instantons are continuously connected to, or
a limiting case of, known instanton effects in specific UV
completions [14]. The virtue of our approach is that, by
working from the bottom up, we deduce that such effects
must exist [15] even when we do not know the UV theory.
(The existence of the instantons we discuss here has been
noted previously by Jake McNamara [16] and communi-
cated to M. R. in the course of writing [14], although
neither considered computing an axion potential from them
at the time.)

The completeness hypothesis postulates that any UV-
complete theory of an interacting Uð1Þ gauge field (which
has quantized charge) contains magnetic monopoles [17],
which break a would-be 1-form global symmetry [18]. This
is, in particular, believed to be true of all theories of
quantum gravity [19–22]. Assuming the validity of the
completeness hypothesis, the instanton effect that we
discuss will give rise to an effective potential for any axion
interacting with photons. This is of great phenomenological
interest, since the θF ∧ F interaction is the primary target
of experimental searches for axions [23–26].
We consider an effective theory of a periodic axion field

θ ≅ θ þ 2π coupled to a gauge field A normalized such that
the allowed Wilson lines P½expðiq H AÞ� have integer
charge q ∈ Z:

S ¼
Z �

1

2
f2dθ ∧ ⋆dθ − 1

2e2
F ∧ ⋆F þ kθ

8π2
F ∧ F

�
: ð1Þ

The axion-gauge field coupling is of Chern-Simons type,
with quantized coefficient k ∈ Z. Through the Witten
effect, a magnetic monopole in the presence of a nonzero
background θ acquires an electric charge −kθ=ð2πÞ. A
consistent description of this effect requires that the
effective theory on the magnetic monopole world volume
contains, in addition to the usual translational zero modes
xμ, a collective coordinate interacting with the field θ. This
takes the form of a compact scalar boson σ ≅ σ þ 2π, with
an action that (expanding around a monopole worldline
extended in time) contains [27]
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S ¼
Z
γ

�
1

2
lσdAσ ∧ ⋆dAσ þ θ

2π
dAσ

�
; ð2Þ

where the gauge-covariant derivative dAσ ≡ dσ þ kA
respects a shift of σ under A gauge transformations. The
mode σ behaves as a quantum particle on a circle (see, e.g.,
Appendix D.1 of Ref. [28]). Its energy eigenstates, labeled
by integers n ∈ Z, correspond to dyonic states of the
monopole with electric charge kðn − θ=2πÞ and energy

En ¼
1

2lσ

�
n −

θ

2π

�
2

: ð3Þ

There is a monodromy n ↦ nþ 1 when θ ↦ θ þ 2π that
ensures the spectrum of the theory is periodic.
We can estimate lσ by comparing Eq. (3) to the energy of

the classical field configuration outside a monopole in an
axion background, following Ref. [29], from which we
obtain

lσ ∼
4π

e2k2
r�; r� ¼ maxðrc; r0Þ; ð4Þ

where rc ¼ π=ðe2mmÞ is the classical radius of the mag-
netic monopole (of mass mm) and r0 ¼ ke=ð8π2fÞ is the
length scale over which the axion field is screened near the
monopole core. In the special case of critical ’t Hooft-
Polyakov monopoles [30,31], we begin with an SU(2)
gauge theory with coupling g. Matching to Eq. (1) gives
e ¼ g=2 and k ¼ 2, while matching to Eq. (2) (when
rc ≫ r0) gives lσ ¼ mm=m2

w wheremm ¼ 4πv=g andmw ¼
gv is the W boson mass. (We have chosen the order-one
coefficient in Eq. (4) to be accurate for this case, but it will
differ in general theories.)
Because the dyon energy spectrum (3) is θ dependent,

we can integrate out the dyons and obtain an effective
potential for θ. This can be understood either as a sum of
Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding of σ
around the loop. These two calculations are related by
Poisson resummation, as we explain below. Although
there is prior work on the θ potential generated by a gas
of (nonvirtual) monopoles and antimonopoles (see
Refs. [29,33–35] and follow-ups) and similar ideas have
been applied to Seiberg-Witten partition functions [36], the
effect of monopole loops on the vacuum θ potential is, as
far as we know, absent from the prior literature.
Monopole loops.—We would like to compute the vac-

uum energy in the presence of “fundamental” magnetic
monopoles. Schematically, the vacuum energy should be
derived by computing a Euclidean path integral of the form

ZðθÞ ¼
X

worldlines

Z
DðfieldsÞe−SE½fields;worldlines;θ�; ð5Þ

and taking the limit of infinite spacetime volume V,

VeffðθÞ ¼ − lim
V→∞

1

V
logZðθÞ: ð6Þ

The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [37].
In the limit where interactions between the configura-

tions are small, we expect the partition function to be
dominated by disconnected vacuum paths characterized by
the transition amplitude ZS1ðθÞ, the Feynman-weighted
sum over all paths that are topologically a circle S1. These
contributions exponentiate:

ZðθÞ ¼
X∞
n¼0

1

n!
ðZS1Þn ¼ exp½ZS1ðθÞ�: ð7Þ

Hence VeffðθÞ ¼ −ð1=VÞZS1ðθÞ; we work in the first-
quantized picture to compute the amplitude ZS1ðθÞ [38].
We sum over all trajectories that return to the same
configuration. This includes an integral over the invariant
length (Schwinger proper time) τ, weighted with a 1=2τ to
account for overcounting trajectories related by translations
and reflections. So,

ZS1 ¼
Z

∞

0

dτ
2τ

Zðτ; θÞ; ð8Þ

with Zðτ; θÞ the sum over transition amplitudes at fixed θ of
all trajectories with invariant length τ.
There are two ways we can compute ZS1 . For a free

particle of mass m, the gauge fixed transition amplitude for
a trajectory of length τ from point x to point x0 is

hx0jxiτ ¼
1

2ð2πτÞ2 exp
�
−

1

2τ
ðx − x0Þ2 −m2τ

�
: ð9Þ

After integrating over all trajectories that begin and end at
the same point and canceling off a factor of the spacetime
volume from the measure with the factor in the definition of
the effective potential, we obtain

Veff ¼ −
Z

∞

0

dτ
2τ

1

2ð2πτÞ2 exp
�
−
m2τ

2

�
: ð10Þ

We will sum over all dyon modes, labeled by n ∈ Z. To
simplify the computation, we assume that the dyon mass
spectrum takes the form

m2
n ¼ m2

m þm2
Δ

�
n −

θ

2π

�
2

; m2
Δ ¼ mm

lσ
: ð11Þ

This agrees with Eq. (3) to order 1=lσ, and in certain cases
is an exact consequence of a BPS condition. In general,
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there may be power corrections in ðmmlσÞ−1. Summing
over the tower of states, we obtain the effective potential

−
X
n∈Z

Z
∞

0

dτ
4τð2πτÞ2 exp

�
−
m2

mτ

2
−
m2

Δτ

2

�
n −

θ

2π

�
2
�
: ð12Þ

Periodicity in θ, arising from the sum over n, is manifest
after Poisson resummation:

X
n∈Z

e−ð1=2Þm2
Δτ½n−ðθ=2πÞ�2 ¼

X
l∈Z

ffiffiffiffiffiffiffiffiffi
2π

m2
Δτ

s
exp

�
−
2π2l2

m2
Δτ

þ ilθ
�
:

ð13Þ

The effective potential then becomes

−
π2

mΔ

X
l∈Z

Z
∞

0

dτeilθ

ð2πτÞ7=2 exp
�
−
m2

mτ

2
−
2π2l2

m2
Δτ

�
: ð14Þ

After integrating, the result is

VeffðθÞ ¼ −
X∞
l¼1

m2
Δm

2
m

32π4l3
e−2πlmm=mΔ cosðlθÞ

×

�
1þ 3mΔ

2πlmm
þ 3m2

Δ
ð2πlmmÞ2

�
; ð15Þ

where we have ignored the irrelevant constant from the
divergent l ¼ 0 integral.
We can think of the integer l as the number of times the

coordinate σ winds around itself for a particular configu-
ration, and so we expect that we can interpret the effective
potential (14) in terms of the monopole wordline action.
Indeed, if we consider the relativistic completion of Eq. (2)
with the dyon collective coordinate σ treated as another
(compact) spatial direction in which the monopole prop-
agates, analogous to the DBI action:

Sm ¼ mm

Z
γ
dλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxμ
dλ

dxμ

dλ
þ lσ
mm

�
dAσ
dλ

�
2

s
þ
Z
γ

θ

2π
dAσ;

ð16Þ

then we can compute the transition amplitude for a
trajectory of length τ from point (x, σ) to point (x0, σ0),

hx0; σ0jx; σiτ ¼
1

2ð2πτÞ5=2 exp
�
−

1

2τ
ðx0 − xÞ2

−
lσ

2mmτ
ðσ0 − σÞ2 −m2

mτ

2
þ iθ
2π

ðσ0 − σÞ
�
:

ð17Þ

Again, we integrate over all trajectories that begin and end
at the same point, this time getting a contribution from the

sum over windings σ0 − σ ¼ 2πl, which nicely reproduces
(15). These calculations are identical to those of loop
effects of Kaluza-Klein modes propagating in a circular
dimension [39–42], but the physical interpretation is not;
here the extra dimension is an internal one, visible only to
the monopole.
We can understand the exponential factor in Eq. (15) via

a saddle point approximation for each l, corresponding to a
classical Euclidean instanton solution that winds l times in
the σ coordinate while remaining at constant xμ. The saddle
is at Schwinger proper time τ� ¼ 2πl=ðmmmΔÞ. The
instanton action, which controls the convergence of the
Fourier expansion (15), is

S ¼ 2πmm

mΔ
∼
4π2

ke2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðrc; r0Þ

rc

s
: ð18Þ

Remarkably, for the critical ’t Hooft-Polyakov monopole,
the instanton action is S ¼ 8π2=g2, precisely that of the
classical BPST instanton in Yang-Mills theory [43,44].
Light and massless fermions.—As is familiar from

standard instanton physics, the presence of light, charged
fermions can dramatically alter a theory’s θ dependence. In
particular, any dependence on θ should vanish as we take
any charged fermion’s mass to zero and thus restore a chiral
symmetry.
Such light fermions similarly affect dyonic physics. In

the presence of a fermion of mass m ≪ mm, the dyon’s
electric charge will no longer be localized to its core [45,46]
but will rather be dispersed in the fermionic vacuum on a
length scale of order m−1. As m → 0, this cloud grows to
encompass all of space and an observer at finite distance
would measure vanishing electric charge: this cloud screens
the charge induced by the Witten effect. Furthermore, there
exists a collection of fermionic excitations about the dyon
that must be accounted for when computing our monop-
ole loops.
While a full analysis of this effect—and the inclusion of

multiple light fermions—is reserved for future work, we
can easily understand how it impacts the dyon mass
spectrum on dimensional grounds. Since the fermion
dilutes the induced electric charge over a region roughly
the size of its Compton wavelength, we expect that
r� ∼m−1 in the estimate (4), and so the dyonic mass
spacing becomes of order m2

Δ ∼mmm. Since this spacing
vanishes as m → 0, so does the θ dependence of the
dyon tower.
Higher-derivative corrections and validity.—Our calcu-

lation assumed the dyon mass spectrum presented in
Eq. (11), which we expect to receive corrections in effective
field theory when monopoles are not BPS. We should
check that our result is robust against such corrections.
These corrections can arise from higher derivative operators
in the bulk effective Lagrangian, like ðFμνFμνÞ2 or
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ðFμνF̃μνÞ2, or higher powers of (∂μσ þ kAμ) in the world-
line Lagrangian. These are related: the former add B4,
ðE ·BÞ2, B2E2, and E4 terms to the energy density ρ.
Integrating ρ outside the monopole core, similarly to the
logic that led us to Eq. (4), implies that these terms modify
the dyon mass spectrum. A series of terms of the form
c2jE2j=Λ4ðj−1Þ in ρ generates corrections to the mass
spectrum in even powers of (n − θ=2π):

m2
n ¼ m2

m þm2
Δ

X∞
j¼1

λ2j

�
n −

θ

2π

�
2j
; ð19Þ

where λ2j ∼ c2jfe2k2=½16π2ðr�ΛÞ4�gj−1 is small when
j > 1 (and λ1 ≡ 1, by the definition of m2

Δ). Terms
involving powers of both B and E give subleading shifts
to the definitions of m2

m, m2
Δ, and the λj.

Repeating our earlier logic, we can sum the
loop corrections (10) using the mass spectrum (19).
Poisson resummation and relabeling n − θ=2π → n then
gives

VeffðθÞ ¼ −
X
l∈Z

Z
∞

0

dτ
4τ

1

ð2πτÞ2 e
−ð1=2Þm2

mτþilθZðl; τÞ;

Zðl; τÞ≡
Z

∞

−∞
dn e−2πinl−ð1=2Þm2

Δτðn2þλ4n4þ���Þ: ð20Þ

To evaluate the integral over n, we work in a saddle point
approximation: defining SlðnÞ to be the function inside the
exponent in Eq. (20), we ask that dSlðn�Þ=dn ¼ 0.
Treating λ4 as a perturbation, we find that

n� ¼ −
2πil
m2

Δτ
− 2iλ4

�
2πl
m2

Δτ

�
3

þOðλ24; λ6Þ: ð21Þ

We require a small correction to the subsequent integral
over τ, dominated by the saddle at τ� ¼ 2πl=ðmmmΔÞ. In
particular, m2

Δτ� ≪ 1 (for small l), which calls for caution:
the semiclassical approximation requires sufficiently small
λ2j. In particular, Eq. (21) implies that a small correction to
n� at the saddle τ� requires

jλ4j ≪
1

2

�
m2

Δτ�
2πl

�
2

∼
1

2

�
mΔ

mm

�
2 ≲ e4k2

8π2
rc
r�
; ð22Þ

where the last inequality can be derived from Eq. (4) and
the surrounding discussion. Along similar lines, we require
jλ2jj ≪ ðmΔ=mmÞ2ðj−1Þ. Focusing only on power counting
in e, this requires that jc2jj≲ e2ðj−1Þ. This will always hold
when the operator E2j is generated through loops of
charged particles, as in the Euler-Heisenberg Lagrangian,
where jc2jj ∼ e2j=ð16π2Þ. In the case with r� ¼ rc, this
verifies that our semiclassical calculation can be performed
within the context of a sensible effective field theory in

FIG. 1. Pink regions: axion oscillates with the monopole loop-induced mass dominating over the monopole background-induced mass
before CMB formation at temperature Trec. Green solid line: the sum of axion abundance (Ωah2) and monopole abundance (Ωmh2)
today is Ωtoth2 ¼ 0.12, above which the abundance overcloses the Universe. Black dashed lines indicate the fraction of axion dark
matter in the total abundance of axion and monopole today. Below the solid blue line, the axion’s mass is so small that it never oscillates,
while it is greater than 10−13 eV to the right of the dashed blue line. When the axion is the dominant component of dark matter today, its
mass is around 10−13 eV, safely above bounds from structure formation. Left panel: monopole yield saturates the Kibble bound. Right
panel: monopole yield is from a second order phase transition with a critical exponent ν ¼ 0.5. We fix mmrc ¼ π=e2, the critical
temperature to be Tc ¼ 1=rc, and f ¼ 1015 GeV.
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which higher derivative operators produce controllably
small corrections. The case r� ¼ r0 requires somewhat
more care regarding the allowed range of the scaleΛ, which
we will not delve into here.
Phenomenological applications.—There could poten-

tially be many interesting phenomenological implications
of this new monopole contribution to the axion potential,
which calls for future work. Here we will only consider a
hidden sector with a gauged Uð1Þd symmetry and a gauge
coupling e as a minimal example to show that this new
contribution could play an important role in the cosmo-
logical evolution of axionlike particles. In the hidden
sector, there is also a global Uð1ÞPQ symmetry which is
broken spontaneously at the scale f and results in a
Goldstone boson, the axion a.
In the presence of monopoles carrying magnetic charge

under the Uð1Þd, the axion obtains a mass from both the
temperature-independent monopole loop, which is the new
finding of our paper, and the temperature-dependent con-
tribution from a monopole background as discussed in
Refs. [29,33–35]. The monopole background could be
generated via the Kibble-Zurek mechanism in a phase
transition happening at a critical temperature Tc in the early
Universe [47,48]. The monopole yield satisfies the Kibble
lower bound [47] and could be significantly above the
bound if the phase transition is second order [48,49]. In this
model, both axions and monopoles could be components of
dark matter. The relevant parameter space is shown in
Fig. 1, assuming that the visible and dark sectors share a
common temperature at early times. We see that when the
gauge coupling e is large, e≳ 0.5, the monopole loop-
induced axion mass would dominate over the contribution
from the monopole background before the CMB formation.
In addition, the axion abundance is negligible when
e≲ 0.5, but it could take over that of the monopoles at
larger values e≳ 0.5. In order not to overclose the
Universe, the monopoles must not be very heavy
[50,51]. Figure 1 establishes that the new effect we discuss
can modify the cosmology of axions and monopoles; it
would be interesting to incorporate it in a wider range of
models in the future.
Conclusions.—In this Letter, we have presented and

computed a new contribution to the vacuum axion potential
from magnetic monopole loops, when the axion is coupled
to an Abelian gauge field. Much more remains to be
studied, both in developing the formalism and exploring the
phenomenological and cosmological implications. We
briefly comment on some possible future directions:
(i) We have assumed VeffðθÞ is dominated by a single
monopole loop, but there are long-range Coulomb inter-
actions between the monopoles. Their effect on the semi-
classical expansion should be explored. (ii) We found that
the action of the monopole-loop instanton in the critical ’t
Hooft-Polyakov case is that of a BPST instanton, 8π2=g2.
This may be a harbinger of a stronger statement: we expect

that the monopole-loop instantons can be continuously
deformed into non-Abelian instantons. If not, the theory
would have an unbroken global (−1)-form Uð1Þ symmetry
in 4D, and a (d − 5)-form symmetry in higher dimensions
[14]. Similarly, in cases where Uð1Þ gauge fields arise on
Dðnþ 3Þ-branes wrapped on n cycles in extra dimensions,
one obtains axion potentials either from wrapped Euclidean
Dðn − 1Þ-branes or from magnetic monopoles, which are
Dðnþ 1Þ-branes ending on the Dðnþ 3Þ-branes. The
winding of σ on the monopole worldline in 4d arises from
a nonvanishing field strength on the Dðnþ 3Þ-brane, which
via the world volume Chern-Simons term, is equivalent to
Dðn − 1Þ-brane charge. Again, we expect that the monop-
ole-loop instanton can be continuously deformed into a
Euclidean brane instanton in this context. These deforma-
tions between instantons should be constructed more
explicitly. (iii) We demonstrated that this new contribution
could be important in a hidden sector model with the axion
coupling to a darkUð1Þd. Consider an axion coupling to the
standard model photon instead. Does this imply a minimum
mass of the axion, even without non-Abelian instantons?
What are the effects of multiple fermions, present in the
standard model? Future work answering these questions
will directly connect the effect we have presented with
ongoing experiments.
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