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We propose a worldsheet description for the AdS5 × S5 string theory dual to large N, free N ¼ 4

supersymmetric Yang-Mills theory in four dimensions. The worldsheet theory is a natural generalization of
the recently investigated tensionless string on AdS3 × S3 × T 4. As in the case of AdS3 it has a free field
description, with spectrally flowed sectors, and is closely related to an (ambi-)twistor string theory. Here,
however, we view it as a critical N ¼ 4 (closed) string background. We argue that the corresponding
worldsheet gauge constraints reduce the degrees of freedom to a finite number of oscillators (string bits) in
each spectrally flowed sector. Imposing a set of residual gauge constraints on this reduced oscillator Fock
space then determines the physical spectrum of the string theory. Quite remarkably, we find that this
prescription reproduces precisely the entire planar spectrum—of single trace operators—of the free
supersymmetric Yang-Mills theory.
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Introduction.—The idea that gauge theories might be
equivalent to string theories is around half a century old.
However, it was only after the AdS=CFT correspondence
that we have had examples of string theories describing a
class of large N, 4D (supersymmetric) gauge theories, as
well as a dictionary between observables on both sides
[1–3]. This remarkable connection between gravity and
gauge theory has been the engine powering many advances
in theoretical physics in the last couple of decades.
One major limitation in these developments has been the

intractability of the string theory side of the correspondence
beyond the large radius or supergravity limit. This is due to
the presence of Ramond-Ramond flux in the background,
which is difficult to incorporate in the conventional
Ramond-Neveu-Schwarz quantization of strings. Thus, in
the canonical example of type IIB string theory on AdS5 ×
S5 dual to 4D N ¼ 4 supersymmetric Yang-Mills (SYM)
theory, most attempts to go beyond the supergravity limit
have employed the Green-Schwarz formalism. But it has
been difficult to quantize this theory even in a physical
light-cone gauge despite the presence of integrability (see
[4] for an overview). One exception has been the influential
Berenstein-Maldacena-Nastase (BMN) approach [5],
which takes a particular plane wave limit of the anti–de
Sitter (AdS) background where the worldsheet theory
becomes free.

In this Letter, we will propose a worldsheet description
of string theory on AdS5 × S5 in the tensionless limit where
it is believed to be dual to free N ¼ 4 supersymmetric
Yang-Mills theory [6]. Our proposal is a logical continu-
ation of our previous investigations [7,8] into the tension-
less limit of AdS3 × S3 × T 4, but it is also structurally very
natural in its own right. In particular, the organization of the
resulting physical string spectrum is a covariant generali-
zation of the light-cone gauge spectrum of BMN away from
any large spin limit. Furthermore, our worldsheet theory is
a close cousin of the ambitwistorial open string formu-
lation, due to Berkovits [9], for describing scattering
amplitudes of perturbative N ¼ 4 supersymmetric Yang-
Mills theory. In fact, the connection with twistors had
already appeared in the AdS3 × S3 case [8] and was a direct
motivation for the present proposal.
The equivalence of tensionless strings on AdS3 × S3 ×

T4 with the dual free symmetric product 2D conformal field
theory (CFT) has been established (at least at the level of
correlators) in [10–12]. The worldsheet description, in that
case, consists of two free fermions and bosons and their
conjugates (all with conformal weight 1

2
and first order

kinetic terms), realizing the AdS3 supergroup psuð1; 1j2Þ1
[7,8]. The generalization here is to a theory of four such free
fermions (ψa) and four bosons ðλα; μ _αÞ with their canonical
conjugates, which give a free field realization of
psuð2; 2j4Þ1. Geometrically, one can view our proposal
as a closed string sigma model with the target space being
the twistor space of AdS5 × S5 [13]. As in the AdS3 case,
we will consider “spectrally flowed” sectors of these
fields—see Eqs. (4)–(7)—labeled by a positive integer w.
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The main upshot of our proposal is as follows: after
gauge fixing, only a finite number (w) of physical world-
sheet degrees of freedom (generalized zero modes) survive
in each w spectrally flowed sector. These are the “wedge
modes” Φr, i.e., modes with f−½ðw − 1Þ=2� ≤ r ≤ ½ðw −
1Þ=2�g of the four worldsheet bosons or fermions (and their
conjugates), collectively denoted here by Φ [14]. Half of
these wedge modes act as creation operators on the
spectrally flowed vacuum state j0iw, defined below in
Eq. (7), and generate a Fock space of states. On this Fock
space we then impose two residual gauge constraints:
(1) Every physical state must satisfy Cnjphysi ¼ 0 for
n ≥ 0, where C is a uð1Þ current [defined below, Eq. (1)]
that needs to be gauged. Here, the (integer valued) modes
Cn act as ½Cn;Φr� ¼ � 1

2
Φnþr, with Φr any of the above

wedge modes; the modes ðλα; μ _α;ψaÞ carry a (−) charge,
while their canonical conjugates [Eq. (1)] carry a (þ)
charge; (2) the (generalized) mass-shell condition L0 ¼
0ðmodwÞ on physical states, where L0 counts, as usual, the
mode number, i.e., ½Ln;Φr� ¼ ½−ðn=2Þ − r�Φnþr [15].
Our central claim is this: The resulting physical sector of

the oscillator Fock space, for each w, is identical to the
space of all the single trace operators built from w super-
symmetric Yang-Mills fields and their derivatives.
The oscillators, together with the above constraints

capture the cyclicity of the trace, the null relations due
to the free equations of motion, and give the right set of
psuð2; 2j4Þ representations present in the free supersym-
metric Yang-Mills spectrum. A general proof of the agree-
ment is given in [16]; we have also checked it explicitly at
low levels; see below and [16] for more details.
Worldsheet theory.—The matter fields of our worldsheet

theory comprise the weight 1
2
conjugate pairs of boson fields

ðλα; μ†αÞ and ðμ _α; λ†_αÞ, with α; _α ∈ f1; 2g, as well as four
weight 1

2
complex fermions ðψa;ψ†

aÞ, with a ∈ f1; 2; 3; 4g
[17]. Here, α and _α are spinor indices with respect to two
different suð2Þ’s, while ψa transforms in the fundamental
representation of suð4Þ. There is also a corresponding
right-moving sector. The modes of these fields obey the
commutation relations

½λαr ; ðμ†βÞs� ¼ δαβδr;−s; ½μ _α
r ; ðλ†_βÞs� ¼ δ _α_βδr;−s; ð1Þ

fψa
r ; ðψ†

bÞsg ¼ δabδr;−s; ð2Þ

where (at least initially) r; s ∈ Zþ 1
2
. We can view these as

components of ambitwistor fields YI ¼ ðμ†α; λ†_α;ψ†
aÞ and

ZI ¼ ðλα; μ _α;ψaÞ, employing the notation of [9]. Note that
for each fixed r, the generators with mode numbers ðr;−rÞ
give rise to two copies of the usual oscillator construction
of the psuð2; 2j4Þ superconformal algebra in 4D [18];
some relevant expressions are given in the Supplemental
Material [19].

These matter fields have a vanishing net central charge,
and the bilinears YIZJ generate the current algebra
uð2; 2j4Þ1. The overall uð1Þ generator C ¼ 1

2
YIZI needs

to be set to zero (the “ambitwistor constraint”) in order to
restrict to psuð2; 2j4Þ; it will play an important role, as
already indicated in the introduction. We also note that an
open string theory of these ambitwistor fields ðYI; ZJÞ
appeared in the construction of [9] with worldsheet action

S ¼
Z

d2zðYIð∂̄ þ Az̄ÞZI þ c:c:Þ; ð3Þ

which, together with a current algebra term for the Yang-
Mills gauge symmetry, denoted by SG in [ [9], Eq. (6)],
reproduces tree level scattering amplitudes of N ¼ 4
supersymmetric Yang-Mills theory. Equation (3) also
describes the action for our system, where the nondynam-
ical uð1Þ gauge field A imposes the vanishing of the current
C ¼ 1

2
YIZI . However, for us Eq. (3) will define a closed

superstring theory, i.e., we will not impose any boundary
conditions on the free fields as in [ [9], Eq. (9)], and it will
not have the additional current algebra term SG of [9].
Nevertheless, the fact that the target space is the same
twistor space additionally motivates our worldsheet
proposal.
In a sense, all the nontrivial aspects of the worldsheet

theory come from the spectrally flowed representations.
Recall that these are nonhighest weight affine representa-
tions that play a crucial role in noncompact Wess-Zumino-
Witten worldsheet theories like those of slð2;RÞ [20] or
psuð1; 1j2Þ, for strings on AdS3. These sectors are in one-
to-one correspondence with the single cycle states of
different length of the dual symmetric product orbifold
CFT [7]. It is therefore natural to expect them to play a role
in the psuð2; 2j4Þ1 theory at hand. Indeed, as mentioned,
we will find these sectors to correspond to single trace
operators in the dual SYM theory of size w.
Let us therefore define the w spectrally flowed fields

(with tildes) as [21]

ðλ̃αÞr ¼ ðλαÞr−w=2; ðλ̃†_αÞr ¼ ðλ†_αÞr−w=2; ð4Þ

ðμ̃ _αÞr ¼ðμ _αÞrþw=2; ðμ̃†αÞr ¼ ðμ†αÞrþw=2; ð5Þ

ðψ̃a
r Þ ¼ ψa

r−w=2; ðψ̃†
aÞr ¼ ðψ†

aÞrþw=2ða ¼ 1; 2Þ; ð6Þ

ðψ̃b
r Þ ¼ ψb

rþw=2; ðψ̃†
bÞr ¼ ðψ†

bÞr−w=2ðb ¼ 3; 4Þ: ð7Þ

The tilde modes have half-integer mode numbers, and thus
the untilde modes can be either integer or half-integer
valued. The precise form of the spectral flow is a natural
generalization of the one defined in [7,8]. In that case, the
mode numbers were shifted by ðJ30 − K3

0Þ, where J30 and K3
0

are the spacetime dilatation and R-symmetry current
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generators, respectively. Here, the modes are analogously
shifted by ðD0 −R0Þ. It is obvious that Eqs. (4)–(7)
preserve the free field algebra [Eq. (1)], and hence the
bilinears of the tilde modes also obey the same commu-
tation relations of uð2; 2j4Þ1. We can therefore use these
tilde modes to realize new representations of this affine
algebra.
Let us denote by j0iw the spectrally flowed vacuum state,

i.e., the state that is annihilated by all the tilde modes with a
positive (half-integer) mode number. In terms of the
original modes (without tildes), this means

μ _α
r ; ðμ†αÞr; ðψ†

1;2Þr; ψ3;4
r ;

�
−
w− 1

2
≤ r≤

w− 1

2

�

ð8Þ
now act as creation operators on j0iw. In addition, the
modes

λαr ; ðλ†_αÞr; ðψ1;2Þr; ðψ†
3;4Þr; ð9Þ

with r ≤ −½ðwþ 1Þ=2�, also do not annihilate j0iw (and
altogether they generate the full Fock space). We will
denote the former (and their canonical conjugates) as
wedge modes, and the latter (and their conjugates with
r ≥ ½ðwþ 1Þ=2�) as “out-of-the-wedge” modes.
In terms of the original (untilde) modes, the resulting

representations are not highest weight since some of the
positive (affine) modes do not annihilate the ground state.
In analogy to the situation for AdS3, we propose that the
worldsheet spectrum consists of the familiar free field
Neveu-Schwarz sector (where all free field modes are half-
integer moded), together with the w spectrally flowed
images of this Neveu-Schwarz sector, where w ∈ N acts
simultaneously on both left and right movers.
The spectral flow also has a nontrivial effect on the

dilatation operator D0 and the Cartan generators of suð4Þ,
and we find explicitly

D̃n ¼ Dn − wδn;0; R̃n ¼ Rn − wδn;0; ð10Þ

where Rn ¼ 1
2
½−ðR1

1Þn − ðR2
2Þn þ ðR3

3Þn þ ðR4
4Þn�, and

D̃0j0iw ¼ R̃0j0iw ¼ 0; see the Supplemental Material
[19] for details. The spectral flow also shifts the worldsheet
Virasoro generator as in the AdS3 case

L̃n ¼ Ln − wðDn −RnÞ: ð11Þ

Note that the combination ðD0 −R0Þ is the BMN-like
light-cone Hamiltonian, which vanishes on the Virasoro
highest weight half–Bogomol’nyi-Prasad-Sommerfield
(half-BPS) state j0iw. It might seem that we are breaking
the suð4Þ invariance with our choice of spectral flow on the
fermions—see Eqs. (6)–(7)—but this prescription only
picks out a specific suð4Þ highest weight state, and the
physical states lie in complete psuð2; 2j4Þ representations,

as will become clear momentarily. Note that although j0iw
is not a highest weight affine primary, Eq. (11) ensures that
it is a Virasoro primary.
Worldsheet spectrum.—We now motivate the quantiza-

tion of our closed string theory, again as a generalization of
the AdS3 × S3 case. There, we have half as many bosons
and fermions, and a similar uð1Þ generator, which has to be
quotiented out in order to get the psuð1; 1j2Þ spacetime
current algebra [7,8]. (There is also a topologically twisted
T4 sector in that case, which is absent for AdS5 × S5.)
Following [22,23], we expect that this worldsheet theory is
quantized through its embedding in the N ¼ 2 string, with
the above uð1Þ constraint being implemented by the
topologically twisted N ¼ 2 algebra [24]. This would then
lead to two bosonic constraints (arising from the Virasoro
and the uð1Þ current of the N ¼ 2), as well as the two
fermionic ones (from the two supercurrents). Locally, this
removes four bosonic and four fermionic physical degrees
of freedom. As seen in [7], we are left with an essentially
topological theory of the (generalized) zero modes on
AdS3 × S3, together with the physical T4 excitations. We
will comment more on this later.
Given that there are twice as many fermions and bosons,

we expect that we can quantize the present psuð2; 2j4Þ1
theory by an analogous embedding into the small N ¼ 4

string where the uð1Þ constraint is again being imple-
mented by the topologically twisted small N ¼ 4 algebra.
We note that the ghost system associated to this topologi-
cally twisted N ¼ 4 string has a vanishing central charge so
that the net central charge, after adding the matter piece, is
still zero; see also [25]. The bosonic generators of the N ¼
4 algebra consist of a triplet of currents and the Virasoro
generator, while we have now four fermionic supercurrents.
We therefore expect that imposing the N ¼ 4 constraints
will locally remove eight bosonic and eight fermionic
degrees of freedom, leaving only a topological sector
behind. More specifically, we postulate that the N ¼ 4

conditions remove all eight bosonic and fermionic out-of-
the-wedge modes, and we thus retain only the wedge
modes f−½ðw − 1Þ=2� ≤ r ≤ ½ðw − 1Þ=2�g of Eq. (8).
The Fock space generated by these modes is the tensor

product of w copies of that generated by a single set of these
oscillators. The latter generate what is called the singleton
representation of psuð2; 2j4Þ once one imposes the con-
dition of vanishing central charge C (see, e.g., [26] and the
Supplemental Material [19]). It is natural that physical
states should be defined by requiring the residual con-
straints Cnjphysi ¼ 0 (for n ¼ 0;…; w − 1). Similarly, we
would expect that translation invariance along the discre-
tized worldsheet made up by the w string bits would be
guaranteed by requiring the generalized mass-shell con-
dition L0 ¼ 0ðmodwÞ. These are the two residual con-
straints mentioned in the introduction that determine the
physical string spectrum. Since Cnj0iw ¼ L0j0iw ¼ 0 for
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n ≥ 0, the spectrally flowed vacuum state j0iw is a physical
state by this criterion. We shall presently identify it with the
half-BPS BMN vacuum.
Matching with the SYM spectrum.—We give a general

argument for the matching of the string spectrum defined
above with the planar spectrum of free N ¼ 4 super-
symmetric Yang-Mills theory in [16]. In the following, we
will get a sense for how this works in practice by looking at
special cases. Let us first define the generators:

ðSIJÞm ¼
Xw−12

r¼m−w−1
2

ðYIÞrðZJÞm−r; ð12Þ

where YI and ZJ were introduced before; see the paragraph
below Eq. (1). For m ≥ 0, these generators map our Fock
space to itself, and they commute with Cn on this Fock
space. The zero modes ðSJI Þ0 map physical states to
physical states, and they furnish, in fact, a realization of
the global uð2; 2j4Þ symmetry; this shows, in particular,
that the physical states fall into representations of the global
psuð2; 2j4Þ algebra.
For example, starting from the physical state j0iw in the

w spectrally flowed sector, the ðSJI Þ0 generate the full
psuð2; 2j4Þ half-BPS multiplet with quantum numbers
ð0; 0; ½0; w; 0�Þw; here, the first two entries are the 4D spins
with respect to the two suð2Þ subalgebras of psuð2; 2j4Þ,
while ½0; w; 0� are the Dynkin labels of suð4Þ, and the
subscript denotes the eigenvalue ofD0 [27]. [The nontrivial
quantum numbers are a consequence of the shifts in
Eq. (10).] ln fact, we have checked for small values of
w that this BPS multiplet accounts for all the physical states
in the sector with L0 ¼ 0. (For w ¼ 2, this also follows
from our more general argument below.) Our construction
therefore gives rise to a covariant version of the light-cone
multiplet built on the BMN vacuum.
A relatively elementary counting argument suggests that

there should be no physical states with L0 > 0, and we have
also verified this explicitly for some simple cases. This
leaves us with the physical states with L0 ¼ −mw (m > 0),
which have, in general, a quite complicated structure. We
have confirmed by explicit computations (in particular we
have checked all states with w,D0 ≤ 4) that they reproduce
the intricate set of non-BPS multiplets (built from w free
fields) of the single trace spectrum of N ¼ 4 SYM,
enumerated, for example, in [28–30]. We will give more
details of the comparison in [16].
In the following, we shall concentrate on the case w ¼ 2

where we can be more explicit. In this case, the modes in
Eq. (8) have mode numbers � 1

2
. To describe the physical

states with L0 ¼ −2m, we observe that we can reduce any
physical state by the application of suitable ðSJI Þ0 gener-
ators to one that has the smallest number (4m) of oscil-
lators, all with mode number ðþ 1

2
Þ. (In particular, if we

choose I and J to both correspond to the modes in Eq. (9),

this reduces the number of modes by 2.) Furthermore, all
such states can be mapped into one another by the action of
the ðSJI Þ0 zero modes [where we now take one index to
correspond to Eq. (9), and one to Eq. (8)]. This shows that
all the physical states at L0 ¼ −2m lie in an irreducible
representation of psuð2; 2j4Þ.
We can actually identify these irreducible representations

explicitly. For L0 ¼ 0, the physical states sit in the BPS
multiplet ð0; 0; ½0; 2; 0�Þ2 that is generated from j0i2 by the
ðSJI Þ0 modes. For L0 ¼ −2, the physical state with smallest
D0 eigenvalue is obtained by applying the four fermionic
þ 1

2
modes to j0i2; this leads to the highest weight state of

the psuð2; 2j4Þ representation ð0; 0; ½0; 0; 0�Þ2—the non-
BPS Konishi multiplet. This construction generalizes to
L0 ¼ −2m, for which the states with lowest D0 eigenvalue
are

Y2m−2

i¼1

½ðμ†αiÞ12μ
_αi
1
2

�ðψ†
1Þ12ðψ

†
2Þ12ψ3

1
2

ψ4
1
2

j0i2; ð13Þ

and they generate the psuð2; 2j4Þ representation

L0 ¼ −2m∶ ðm − 1; m − 1; ½0; 0; 0�Þ2m ð14Þ

since the indices fαig and f _αig are totally symmetrized.
These are the higher spin conserved currents (bilinears) of
the free theory with the lowest component having spin
(2m − 2). This then precisely reproduces the first line
of [ [30], Eq. (3.8)]—the representation in Eq. (14) is what
is called V2m there. These states, summed over m, combine
into a single higher spin multiplet—the symmetrized
doubleton—of the higher spin algebra hsð2; 2j4Þ.
Let us also note that for w ¼ 0 there are no physical

states other than the Neveu-Schwarz vacuum that corre-
sponds to the identity operator. For w ¼ 1, the only
physical states are in the L0 ¼ 0 sector (Ramond vacuum)
and correspond to the singleton representation: a single
copy of the supersymmetric Yang-Mills fields; see the
Supplemental Material [19] for details. As usual, this is
present only in a UðNÞ gauge theory and can be projected
out. Thus, the first nontrivial states arise from the above
w ¼ 2 sector.
We can see that the organization of the spectrum is very

similar to that of BMN: we have a BPS “vacuum,” from
which the full Fock space is generated by oscillator
excitations that carry worldsheet momentum—the wedge
modes can be thought of as being a discrete Fourier
transform of w string bit position operators; see [16] for
more details. However, our oscillators are twistorial rather
than the light-cone Green-Schwarz ones of BMN [5,31]. In
fact, what we have is a worldsheet realization of a picture
proposed for weakly coupled supersymmetric Yang-Mills
theory in [32].
Relation to the analysis for AdS3.—It is instructive to

apply our approach of quantizing the system to the case of
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AdS3 × S3 × T4, i.e., to consider the reduced oscillator
Fock space for that case. The relevant wedge modes are
then associated to μ1, μ†1, ψ

†
1, ψ

3, say, and we need to
impose the constraints of Cn ¼ 0, L0 ¼ 0ðmodwÞ.
Interestingly, we find a nice closed subsector of the states
of the dual free symmetric product CFT. In some sense,
these states are compactification independent and include,
for w ¼ 2, the higher spin fields of hsð1; 1j2Þ [33]. The
states for higher w are special matter multiplets of the
higher spin symmetry. We describe the details in [16].
The consistency of this result with the different approach of
[7] is additional support for our proposed quantization
procedure for AdS5 × S5.
Comments.—We noted earlier that the worldsheet fields

can be viewed as ambitwistor string variables YI, ZI with
the constraint C ¼ 1

2
YIZI ¼ 0. There is also an analog of

spectral flow in that language since one needs to sum over
instanton sectors carrying nontrivial U(1) flux. In fact, in
the presence of flux these sectors have a space of left-
moving zero modes (the holomorphic sections of the
nontrivial line bundle) for the twistors [34,35], which
can be identified with our wedge modes. Viewing the
wedge modes as (generalized) zero modes motivates
considering only the chiral (say, left-moving) degrees of
freedom, as we have implicitly done above. We should
expect the left- and right-moving wedge modes not to be
independent degrees of freedom but rather to be related by a
reality constraint [36]. It would be interesting to under-
stand the exact relation of our approach to quantizing the
theory as an N ¼ 4 string to the (ambi-)twistor string
approach to supersymmetric Yang-Mills scattering ampli-
tudes [9,37,38].
Discussion.—While we have invoked the superstructure

of an embedding into a twistedN ¼ 4 string to quantize our
worldsheet theory, it is clear that the reduced oscillator
construction we have motivated captures the physics of the
free Yang-Mills spectrum. We expect correlators of our
worldsheet theory to exhibit a similar localization as in the
2D case [8,10]. In fact, Feynman diagram contributions to
free Yang-Mills correlators admit a geometric interpretation
in terms of covering maps to twistor space [39] and
generalize the correspondence with Strebel differentials
[40,41] already seen in [42]. It would be interesting to also
connect this to the picture of [43]. The free Yang-Mills
spectrum exhibits a Hagedorn transition [44–46], and it
would be nice to understand its physics in our world-
sheet model.
We note that, once our proposed worldsheet theory is

fully quantized, it should be possible to systematically
consider perturbations away from the free point since
there is a corresponding marginal operator on the world-
sheet. Given our string bit picture, we expect to see a direct
worldsheet reflection of the integrable spin chain
Hamiltonians [47] and to be able to derive the
AdS=CFT correspondence in a perturbative expansion.

Finally, we must remark that our construction has a
truncation, effectively, to the bosonic twistor oscillators
ðμ _α; μ†αÞ, which then reproduces the planar spectrum of free,
pure Yang-Mills. It is also intriguing that the twisted N ¼ 4
string embedding admits the N ¼ 0 (bosonic) string as a
special vacuum, where the worldsheet supersymmetry is
spontaneously broken [48,49]. Could this be the route to
obtaining the long sought after string dual to planar QCD?
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