
Destabilization of Black Holes and Stars by Generalized Proca Fields

Sebastian Garcia-Saenz ,1,3,* Aaron Held ,1,† and Jun Zhang 1,2,‡
1Theoretical Physics, Blackett Laboratory, Imperial College London, SW7 2AZ London, United Kingdom

2Illinois Center for Advanced Studies of the Universe and Department of Physics, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801, USA

3Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

(Received 6 May 2021; accepted 3 September 2021; published 23 September 2021)

We demonstrate that black holes and stars in general relativity can be destabilized by perturbations of
nonminimally coupled vector fields. Focusing on static and spherically symmetric backgrounds, our
analysis shows that black holes with sufficiently small mass and stars with sufficiently high densities are
subject to ghost- or gradient-type instabilities. This holds for a large class of Einstein-Proca theories with
nonminimal couplings, including generalized Proca models that have sparked attention for their potential
role in cosmology and astrophysics. The stability criteria translate into bounds of relevance for low-scale
theories of dark energy and for ultralight dark matter scenarios.
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Introduction.—Compact astrophysical objects afford a
unique opportunity to probe the existence of new light
particles whose couplings to ordinary matter are tooweak for
direct detection. Observational signatures, including poten-
tially dramatic effects [1–8], bear the potential to reveal
otherwise hidden gravitationally induced bosonic conden-
sates. Black holes and compact stars, thus, constitute pre-
cious targets for testing particle physics and cosmology via
strong-field gravity and multimessenger astronomy [9,10].
Theory needs to inform experiment by mapping out the

“phase diagram” of black holes and compact stars. In a first
step, an ambitious research program drives the development
of theoretically consistent bosonic field theories and their
interaction with gravity [11–13]. In a second step, astro-
physically relevant solutions are analyzed, asking (i) whether
they can account for the observed compact objects and
(ii) whether potential instabilities can occur.
Here, we advance the second step and focus on vector

bosons [14,15]. These are predicted by a number of
scenarios beyond the standard model [16,17] and serve as
viable candidates for dark matter [18–20] and dark energy
[21–26]. If such a light vector particle were to arise from a
hidden sector and its dominant interaction with visible matter
is mediated by gravity, one is led to consider Einstein-Proca
theory of a massive vector field coupled to gravity. While
astrophysical solutions in the minimal version of the theory
are constrained by the no-hair theorem [27,28], this does not
necessarily apply when including nonminimal couplings,
i.e., couplings beyond a covariantization of the kinetic term.
The general class of Einstein-Proca theories, thus, accom-

modates exotic solutions, including hairy black holes [29–
35], boson stars [36], and vectorized stars [37–39]. These
may be constrained by current and future observations
through the beyond-general-relativity effects of Einstein-
Proca theories studied, e.g., in Refs. [40–51].

Nevertheless, all Einstein-Proca theories which admit the
same solutions as general relativity (GR) (supplemented
with a vanishing vector-field background) remain uncon-
strained. In this situation, the crucial phenomenological
question, thus, concerns the stability of GR solutions.
In this Letter, we show that Schwarzschild black holes

(and stars) destabilize if their mass (inverse density) drops
below a threshold value, related to the nonminimal Einstein-
Proca couplings. This allows us to either directly constrain
the theory or conclude that GR solutions evolve into non-GR
solutions with a nonvanishing vector field.
Although, in the linearized approximation, it is only the

vector field and not the metric which suffers from an
instability, the backreaction of the vector beyond linear
order is expected to render the whole system unstable.
Crucially, the uncovered destabilization differs from what is
known as “vectorization” [52–55]. In analogy to scalariza-
tion [56], vectorization occurs due to tachyonic modes, i.e.,
wrong-sign mass terms. Here, we find that destabilization is
always driven by a ghost or gradient mode, i.e., a wrong-sign
kinetic or gradient operator. The latter instability is expected
to be far more dramatic than the tachyonic one, with
potentially unique astrophysical observables. This calls for
numerical-relativity investigations (cf. Refs. [57,58] for
linear Proca fields and Refs. [59–67] for related numerical
studies in other beyond-GR theories), as one may, in
principle, expect a significant signal in gravitational waves
sourced by the exponentially growing vector modes beyond
linear order.
This novel destabilization channel and the related astro-

physical bounds apply to all Einstein-Proca theories with
nonminimal couplings that contribute to the linearized
dynamics. This includes generalized Proca (GP) theory
[68–70], which has received much attention recently in
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studies of dark matter and dark energy as well as on the
potential role of new light particles in astrophysical phe-
nomena. We find that destabilization of stellar-mass
Schwarzschild black holes constrains cosmological models
in which the associated nonminimal coupling is set by the
energy scale Λ ∼ ðMPlH2

0Þ1=3, whereMPl is the Planck scale
and H0 is the Hubble constant. Moreover, if stellar mass
black holes acquire transient charges [71,72], destabilization
could also constrain fuzzy dark-matter models [73].
General quadratic Lagrangian.—We consider a metric

tensor gμν and vector field Aμ with an action

S½g; A� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
FμνFμν −

μ2

2
AμAμ

þ G4;XAμAνGμν −
G6

4
ðFμνFμνR

− 4FμρFν
ρRμν þ FμνFρσRμνρσÞ

�
: ð1Þ

Here, G4;X and G6 are the two constant parameters that
define the model, MPl ¼ ð1= ffiffiffiffiffiffiffiffiffi

8πG
p Þ is the Planck mass,

and μ is the mass of the vector field (we assume μ2 > 0).
For instance, Eq. (1) follows from expanding the complete
GP theory to quadratic order in the vector field about
hAμi ¼ 0 on an arbitrary curved background (see
Supplemental Material, Sec. A [74]).
GP is the complete generalization of the standard Proca

theory; i.e., its interactions preserve the existence of a
(local) frame in which the component A0 is nondynamical.
Although sufficient, this is not necessary for consistency
with respect to the number of degrees of freedom [75,76];
see [77–79] for alternative extensions. Nevertheless, Eq. (1)
is the most general vector-tensor model that is (i) quadratic
in the vector field, (ii) a function of the vector field and its
first derivative only, and (iii) at most linear in the undiffer-
entiated curvature.
Condition (i) follows because we are investigating the

linear stability of GR solutions without a vector conden-
sate. Condition (ii) is a sufficient condition to avoid extra
degrees of freedom as in GP theory. Condition (iii) is
motivated by our focus on astrophysical GR backgrounds
with subleading higher-derivative terms.
Stability and quasinormal modes of a minimally coupled

Proca field on black-hole spacetimes are studied in
Refs. [80–83]. The coupling proportional to the Einstein
tensor was considered previously, e.g., in Refs. [29–31],
although restricted to unperturbed backgrounds. The inter-
action terms involving the field strength, which are rem-
iniscent of the Drummond-Hathrell effective action [84],
were studied in Ref. [85]. We confirm their results on the
stability of GR black holes as a special case of our more
general setup.
Stability conditions.—We focus on static and spherically

symmetric backgrounds, for which the metric can be
chosen as

gμνdxμdxν¼−fðrÞdt2þ dr2

gðrÞþ r2ðdθ2þ sin2 θdϕ2Þ: ð2Þ

Perturbations of the metric about GR backgrounds with a
vanishing vector field decouple and can be ignored. The
vector field can be decomposed in vector spherical har-
monics (see, e.g., [86]):

Aμ ¼
X∞
l¼0

Xl

m¼−l

X4
I¼1

CðIÞ
l;mðt; rÞðZðIÞ

l;mÞμðθ;ϕÞ: ð3Þ

Explicit expressions for ZðIÞ
l;m are given in Supplemental

Material, Sec. B [74]. The mode functions CðIÞ
l;m with I ¼ 1,

2, 3 correspond to perturbations with polar parity, while
Cð4Þ
l;m corresponds to an axial-parity mode. Parity is a “good

quantum number.” Hence, polar and axial perturbations
decouple at linear order.
The stability of localized perturbations—with physical

size much smaller than all the length scales of the back-
ground—is dictated by the structure of the causal cones
(see [87–90] for related discussions). In other words, to
address the question of local stability, one may neglect
background variations and evaluate all metric functions at
fixed radius r0. The propagator matrix for the mode
functions CðIÞ

l;m is defined in Fourier space. Gradient and
tachyonic instabilities can be determined by the dispersion
relations, defined by the poles of the inverse propagator
matrix. The presence of ghosts follows from the matrix of
residues. See Supplemental Material, Sec. C [74], for
details. Henceforth, we drop the subscript on the fixed
radius r0.
The axial sector has a single degree of freedom. Its

dispersion relation follows from the decomposed action

H1

f
ω2 − gH2k2 −

�
N m þ lðlþ 1Þ

r2
N j

�
¼ 0; ð4Þ

where ω and k are the comoving (as opposed to proper)
frequency and radial wave number, respectively, and

H1 ¼ 1 −G6

g0

r
; H2 ¼ 1 −G6

f0g
fr

;

N m ¼ μ2 þ G4;XðR − 2r2RθθÞ;

N j ¼ 1þG6

�
R − 4r2Rθθ þ 2ð1 − gÞ

r2

�
: ð5Þ

Here, a prime denotes differentiation with respect to r. The
curvature terms R and Rθθ are known in terms of f and g.
For l ≥ 1, only two combinations of the three polar mode

functions Cð1;2;3Þ
l;m are dynamical. Integrating out the non-

dynamical mode (see Supplemental Material, Sec. B [74]),
we can infer the two-by-two (inverse) propagator matrix P.
Its components read
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P11 ¼
a20

gðM2 þH2
lðlþ1Þ
r2 Þ

ω2 −
fa20

ðM1 þH1
lðlþ1Þ
r2 Þ

k2 − σ0;

P22 ¼
M1H1

fr2ðM1 þH1
lðlþ1Þ
r2 Þ

ω2 −
gM2H2

r2ðM2 þH2
lðlþ1Þ
r2 Þ

k2

−
N m

r2
;

P12 ¼
σ0a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ðM1H2 −M2H1Þ

r2ðM1 þH1
lðlþ1Þ
r2 ÞðM2 þH2

lðlþ1Þ
r2 Þ

ωk: ð6Þ

Here, a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðgjG1j=fÞ

p
, σ0 ¼ sgnðG1Þ, and

G1 ¼ 1þ 2G6

1 − g
r2

;

M1 ¼ μ2 − 2G4;X

�
g0

r
−
1 − g
r2

�
;

M2 ¼ μ2 − 2G4;X

�
f0g
fr

−
1 − g
r2

�
: ð7Þ

The dispersion relations are defined by the roots ω2
� of the

equation detP ¼ 0.
Monopole perturbations with l ¼ 0 are special in that

only Cð1Þ
0;0 is present in the polar sector. Its dispersion

relation reads

jG1j
fM2

ω2 −
gjG1j
M1

k2 − σ0 ¼ 0: ð8Þ

Notice that the dispersion relations of the polar and axial
sector involve the same functionsH1,H2, andN m. A priori,
these functions need not be in any way related—in fact, they
are not for the monopole modes. This coincidence has
important consequences for the stability conditions.
The stability of axial perturbations under ghosts and radial

gradients dictates that H1 > 0 and H2 > 0 for all physical
radii. Stability of these modes under angular gradients,
which means that ω2 must be positive in the limit
l → ∞, requires N j > 0. Similarly, stability of the polar
monopole mode implies that M1 > 0 and M2 > 0. Given
these conditions, it then follows that all polar modes with
l ≥ 1 are stable under ghosts and radial gradients; see
Supplemental Material, Sec. C [74]. Furthermore, the
stability of these modes under angular gradients gives
independent constraints, namely, N m > 0 and G1 > 0. In
turn, these last two conditions imply the absence of
tachyonic instabilities for all the perturbations.
An important outcome is that tachyonlike instabilities are

absent—for, if such modes are excited, they are necessarily
accompanied by ghosts and/or gradient-unstable modes with
a much faster growth rate. Hence, vector condensates cannot
form as a result of a standard vectorization mechanism—
which by definition follows from a tachyon- or Jeans-type
destabilization—starting from any static spherically

symmetric GR state and for any Einstein-Proca theory that
reduces to Eq. (1) at linear order.
Black holes.—For the Schwarzschild black hole (BH) of

mass M, i.e., for f ¼ g ¼ 1 − ðrs=rÞ with rs ¼ 2GM, the
stability conditions simplify. Whenever g ¼ f holds,
H1 ¼ H2, M1 ¼ M2, and the propagator matrix in
Eq. (6) is diagonal. Moreover, for vacuum GR solutions,
the dependence on G4;X drops out; cf. Eq. (1). For the
Schwarzschild spacetime, one finds that N m ¼ M1 ¼
M2 ¼ μ2 are automatically positive, while H1 ¼ H2 ¼
1 − ðG6rs=r3Þ and N j ¼ G1 ¼ 1þ ð2G6rs=r3Þ. Positivity
of these functions for all r ≥ rs requires

−
1

2
<

G6

r2s
< 1; ð9Þ

in order for Schwarzschild BHs to be stable. This bound is
in agreement with the results of Ref. [85]. It implies that
small enough BHs are always unstable whenever G6 is
nonzero.
Order-of-magnitude estimates (assuming validity of the

vector theory on all involved scales) reveal that the stability
bound in Eq. (9) could be of relevance both in late-time
cosmology as well as for primordial BHs. In the cosmo-
logical setting, nonlinear operators are typically controlled
by an energy scale Λ ∼ ðMPlH2

0Þ1=3, whereH0 is the Hubble
constant [91,92]. (This estimate is based on scalar-tensor
theories and implicitly assumes the existence of a decoupling
limit in which the vector-tensor models we consider can be
approximated by scalar-tensor interactions.) Taking, for
example, G6 ∼ Λ−2, this yields G6 ∼ ð103 kmÞ2, implying
the destabilization of stellar-mass BHs while supermassive
BHs remain stable. For smaller values of G6, stellar-mass
BHs remain stable while primordial BHs in the experimen-
tally preferred range rs ∼ 10−10 m [93] would still be subject
to the instability.
Constraining the parameter G4;X requires to look at non-

Ricci-flat GR solutions. We consider the Reissner-
Nordström (RN) metric as a first example. Although
astrophysical BHs are unlikely to exhibit significant electric
(or magnetic) charge, small and transient charges remain
viable. For instance, stellar-mass BHs could accrete charges
up to the order of 10−7, in units of the BHmass [72], through
the Wald mechanism [71] in a merger with a strongly
magnetized neutron star. (In Refs. [71,72], the charging
effect requires a spinning BH; however, a more recent study
[94] has shown that rotation is not needed and that the
relative motion between the coalescing BH and neutron star
can generate charges of comparable magnitude.)
The RN metric is defined by f ¼ g ¼ 1 − ðrs=rÞþ

ðr2Q=4r2Þ. Here, rQ ¼ 2
ffiffiffiffi
G

p
Q in terms of the hole’s electric

charge, and we recall the extremality bound rQ ≤ rs. The
stability conditions now depend on the scale rQ; cf. Fig. 1
and Supplemental Material, Sec. D [74], for the analytic
expressions. For G6, we observe a nontrivial dependence of
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the stability bounds on the charge (cf. Ref. [85]); in
particular, they are most restrictive for an extremal BH,
for which jG6j=r2s < 1=8.
More interestingly, we find a novel bound on G4;X:

jG4;Xj
μ2r2s

<
½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðrQ=rsÞ2

q
�4

8ðrQ=rsÞ2
: ð10Þ

Remarkably, for any fixed G4;X, rs, and rQ, this bound
implies a lower limit on the vector-boson mass μ. As a
concrete example, for G4;X ¼ Oð1Þ, as typically consid-
ered in the literature, stability of a stellar-mass BH with
rs ∼ 10 km that acquires the aforementioned estimate
rQ ∼ 10−7rs implies μ ∼ 10−17 eV as the critical vector-
boson mass. Comparison with the typical mass range
10−22 − 10−20 eV for fuzzy dark matter [73] exemplifies
the significance of Eq. (10) for the study of ultralight
particles. We note that G4;X may not be independent of μ:
If the operators that break gauge invariance were to arise
from a Higgs-type mechanism, we would expectG4;X ∝ μ2

[95] and our stability criteria would not directly constrain
the mass μ but rather the scale of symmetry breaking.
Stars.—We have analyzed the stability conditions for

static perfect fluid stars governed by the Tolman-
Oppenheimer-Volkoff equations. Although for generic
equations of state (EOS)—relating the pressure p to the
density ρ—the metric cannot be determined in analytic
form, critical values for the parametersG6 andG4;X can still
be obtained if one assumes that the functions that determine
the stability are minimized at the center of the star. We have
checked analytically that this assumption is correct for a
uniform-density star and also numerically for a polytropic
star with EOS p ¼ Kρ5=3; see Supplemental Material,
Sec. D [74]. It is plausible that the assumption is true

for all realistic EOS, including ones for imperfect fluids, and
we plan to come back to this question in a dedicated work.
Under this premise, we can infer the following bounds

on the GP coupling constants:

−
3

2ρc
<

G6

M2
Pl

<
3

ρc þ 3pc
;

−
1

2ρc
<

G4;X

μ2M2
Pl

<
1

2pc
; ð11Þ

where pc and ρc are the pressure and density at the center,
respectively. Figure 2 shows the critical values of G6 and
G4;X=μ2 for stellar models with uniform density and γ ¼
5=3 polytropic EOS, plotted as functions of the normalized
star’s radius. We observe an interesting dependence on the
EOS, with the bounds for a polytrope being up to 3 orders
of magnitude stronger than for a uniform-density star with
the same central pressure and density.
The stability window for both coupling parameters

shrinks to zero as the star’s central pressure and density
increase. For a neutron star with ρc ∼ 1018 kgm−3∼
10−76M4

Pl, one has Λ=MPl ≳ 10−38 if we take jG6j∼
jG4;Xj=μ2 ∼ Λ−2. This bound on Λ may seem mild but

FIG. 1. Region plot of the GP parameters for which a
destabilization of the RN BH occurs, blue for G6 and orange
for G4;X=μ2 (normalized by the Schwarzschild radius).

FIG. 2. Critical values of the GP parameters for which an
instability is triggered in stars modeled by uniform density
(“UDS”) and γ ¼ 5=3 polytropic index (“Poly”) as inferred from
Eq. (11). Colored points label different values of the central
pressure, ranging from 10−2 (red; upper-right end) to 104 (blue;
lower end) in arbitrary units such that K ¼ 1 (the constant
appearing in the polytropic EOS). Despite this arbitrariness,
the comparison between different pressures and between the two
stellar models is meaningful.
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again could be violated in very low-scale models like the
ones envisioned in cosmology and in the context of ultralight
dark matter.
Discussion.—We identify a novel destabilization channel

for static and spherically symmetric GR backgrounds
triggered by nonminimally coupled vector perturbations.
Any nonvanishing nonminimal coupling destabilizes small
enough BHs and dense enough stars. The implied astro-
physical constraints ultimately depend on the scales at
hand. We find relevant constraints for theories of dark
energy and ultralight dark matter. The nonminimal cou-
plings that source destabilization [cf. Eq. (1)] naturally
appear in all of these scenarios unless the model is fine-
tuned to avoid them.
More specifically, avoiding instabilities of stellar-mass

BHs and/or neutron stars constrains the respective non-
minimal coupling at cosmologically relevant scales set by
Λ ∼ ðMPlH2

0Þ1=3, with MPl the Planck scale and H0 the
Hubble constant. In turn, transient charges, potentially
induced by nearby strongly magnetized neutron stars,
imply further destabilization constraints involving the
Proca mass and are of relevance for ultralight vector
dark-matter models.
Notably, destabilization differs from vectorization. The

latter describes a transition between GR and non-GR
solutions via a tachyonic growth mode. Here, we find that
a potential tachyonic instability is always accompanied by a
dominant ghost or gradient instability. Hence, destabiliza-
tion is controlled by the highest growth rates in the
problem. The timescale and fate of the instability, thus,
remain uncertain.
We emphasize that the destabilization channel concerns

only GR solutions and does not constrain solutions with
nontrivial vector hair. Formally, we have shown only a
linear instability in the vector field and not in the metric.
However, as one may expect for ghost or gradient modes,
interactions beyond linear order will generically destabilize
the full system. Future nonlinear studies are necessary to
strictly discard the possibility that the vector field may
settle into a condensed state with the GR metric being kept
intact, as occurs with so-called “stealth” solutions [96–99].
From the perspective of radiative corrections, the inclu-

sion of higher-derivative operators may quench the insta-
bility, similarly to the phenomenon of ghost condensation
[100]. This possibility calls for a detailed study to deter-
mine the role of higher-order operators. Assuming the
transition can be made sense of in a controlled theoretical
framework, our analysis makes a strong case for simulating
Einstein-Proca theories in numerical relativity.
There are also several avenues for future work within the

present setup of linear perturbations about GR back-
grounds. This includes (i) studying a broader set of stellar
models in order to verify the robustness of our bounds in
Eq. (11); (ii) effects of a cosmological constant, potentially
related to extended vector fields in holographic models

(see, e.g., [101–103]); and, of course, (iii) an extension to
nonstatic systems, in particular, rotating BHs and stars.
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