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We present the first direct numerical simulation of gravitational wave turbulence. General relativity
equations are solved numerically in a periodic box with a diagonal metric tensor depending on two space
coordinates only, gij ≡ giiðx; y; tÞδij, and with an additional small-scale dissipative term. We limit
ourselves to weak gravitational waves and to a freely decaying turbulence. We find that an initial metric
excitation at intermediate wave number leads to a dual cascade of energy and wave action. When the direct
energy cascade reaches the dissipative scales, a transition is observed in the temporal evolution of energy
from a plateau to a power-law decay, while the inverse cascade front continues to propagate toward low
wave numbers. The wave number and frequency-wave-number spectra are found to be compatible with the
theory of weak wave turbulence and the characteristic timescale of the dual cascade is that expected for
four-wave resonant interactions. The simulation reveals that an initially weak gravitational wave turbulence
tends to become strong as the inverse cascade of wave action progresses with a selective amplification of
the fluctuations g11 and g22.
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Introduction.—Wave turbulence (WT) is a state of a
continuous mediumwith randommutually interacting waves
of weak amplitude excited over a broad range of wave
numbers. The long-time statistical properties of such a
medium have a natural asymptotic closure induced by the
large separation of linear and nonlinear timescales [1–3]. The
dynamics of WT is driven by kinetic equations which
describe the redistribution of spectral densities via mainly
three- or four-wave resonant interactions. The kinetic equa-
tions have two types of exact stationary power-law solutions:
the zero-flux equilibrium thermodynamic spectra and the
finite flux nonequilibrium Kolmogorov-Zakharov spectra
[4]. The latter solutions are much more interesting because
they describe the spectral transfer of conserved quantities,
such as energy or wave action, generally between a source
and a sink [5,6]. The direction of the cascade, direct or
inverse, can be found by a numerical evaluation of the sign of
the associated flux. The theory also offers the possibility to
predict the Kolmogorov constant. All these properties makes
WT a very interesting regime to understand the mechanisms
underlying turbulence in depth.
WT is of interest to many physical systems for which

theoretical predictions have been made and numerically or
experimentally verified. We have, among others, capillary
waves [7–14] and gravity waves [15–18] on fluid surfaces,
inertial waves in rotating hydrodynamics [19–26], elastic
waves on thin vibrating plates [27–32], optical waves in
optical fibers [33,34], waves in Bose-Einstein condensate

[35,36], Kelvin waves on quantum vortex filaments [37–39],
magnetostrophic waves in geodynamo [40,41] and magneto-
hydrodynamic waves in space plasmas [42–47]. Recently, a
theory of WT has been developed for gravitational waves
(GWs) [48], a few years after their first direct detection [49].
A promising application concerns the primordial universe
shortly after the hypothetical initial singularity. During this
period, GWs can be produced by different mechanisms like,
e.g., first order phase transition [50,51] or the merger of
primary black holes which can be formed from the primor-
dial space-time fluctuations [52]. A typical length scale of
GW excitation can be 10−30 m. Following this idea, a
scenario of cosmological inflation has been proposed relying
on the presence of weak or strong GW turbulence and rapid
formation of a condensate via an inverse cascade [53]. In this
scenario, the initial strong GW bursts are quickly diluted as
they propagate through the surrounding space, resulting in a
statistically quasihomogeneous GW field that is weakly or
strongly nonlinear depending on the strength and density of
forcing events. For theweakWT case, a kinetic equation that
describes the dynamics of energy and wave action via four-
wave resonant interactions was derived. It has exact sta-
tionary scaling solutions for the one-dimensional (1D)
isotropic spectrum of wave action: k−1 for the direct energy
cascade and k−2=3 for the inverse wave action cascade.
Further, an explosive front propagation in the inverse
cascade is predicted and numerically observed with a
phenomenological nonlinear diffusion model where strongly
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local interactions are retained [54]. With this model, it is also
shown that the nonstationary isotropic spectrum of wave
action is slightly different from the Kolmogorov-Zakharov
solution with a power-law index ∼ − 0.6517, instead of
−2=3 for the stationary solution. However, this regime of
WT is realized under assumptions that the initial condition
consists of weak waves with random phases, and that the
nonlinearity remains weak and the phases remain random
during the evolution. Study of validity of such assumptions
and robustness of the results with respect to more general
(not necessarily wave dominated) initial conditions requires
numerical simulations. Besides, the underlying nonlinear
dynamics has never been explored in the physical space and
this requires the use of numerical simulations.
In this Letter, we report the first direct numerical

simulations (DNS) of weak GW turbulence. This regime
is studied in both physical and spectral spaces. Our study
reveals that, despite having its own distinct properties,
space-time turbulence behaves in a classical way from the
point of view of the general turbulence theory.
Einstein’s equations.—Following [48,55], we shall con-

sider the vacuum general relativity equations [56,57] with
the Hadad-Zakharov (2.5þ 1) diagonal metric

g00 ¼ −ð1þ γ̃Þ2e−2λ; g11 ¼ ð1þ β̃Þ2e−2λ; ð1Þ
g22 ¼ð1þ α̃Þ2e−2λ; g33 ¼ e2λ: ð2Þ

The metric depends on the space-time variables x, y, and t
but is independent of z. It can describe GWs of any
amplitude, however, we limit ourselves to weak GW
amplitude, i.e., α̃; β̃; γ̃; λ ≪ 1. Within this limit, Einstein’s
equations in the leading order are [48]

∂x
_̃α ¼ −2_λð∂xλÞ; ∂y

_̃β ¼ −2_λð∂yλÞ; ð3Þ
∂x∂yγ̃ ¼ −2ð∂xλÞð∂yλÞ; ð4Þ

∂t½ð1þ α̃þ β̃ − γ̃Þ_λ� ¼ ∂x½ð1þ α̃ − β̃ þ γ̃Þ∂xλ�
þ ∂y½ð1 − α̃þ β̃ þ γ̃Þ∂yλ�; ð5Þ

where we define _f ≡ ∂tf. The linear solution of this system
[see Eq. (5)] is a plus-polarized GW with a dispersion
relation ω ¼ k (with the speed of light c ¼ 1 and k ¼ jkj)
[58]. For the analysis below, it is useful to recall the link
between the canonical variable ak and the primary variables,
ak ¼ ffiffiffiffiffiffiffiffi

k=2
p

λk þ i
ffiffiffiffiffiffiffiffiffiffi
1=2k

p
_λk, where λk is the Fourier trans-

form of λ [48]. The two-dimensional (2D) wave action
spectrum will be numerically computed using the relation
NðkÞ ¼ jakj2 (homogeneity will be used as well as plane
waves), and the 2D energy spectrum is EðkÞ ¼ ωNðkÞ [48].
DNS of Eqs. (3))–(5) are performed with an additional

dissipative term acting at small scales to avoid numerical
instabilities [59]. This term, added in the rhs of Eq. (5),
takes the form −νk4 _λk (for k ≥ kdiss) in Fourier space (see,
e.g., [27]). Physically, GW dissipation by matter is

expected through, e.g., Landau damping [60]. (Note that
the nondissipative Einstein equations become invalid at the
Planck length.) However, in our case, the dissipation has no
precise origin and must be considered as a mechanism
mimicking existence of a positive energy flux which would,
otherwise, be blocked due to the presence of the maximum
wave number in our numerical method. We developed a
pseudospectral code using FFTW3 routines, with periodic
boundary conditions and dealiasing [61]. Since we deal
with real fields only, the Fourier space is restricted to
ky ≥ 0. An Adams-Bashforth numerical scheme is used to
integrate the nonlinear terms. For solving the double time
derivative in Eq. (5), an intermediate variable Λ ¼ ∂tλ is
introduced. We also introduce intermediate variables
A ¼ ∂tα̃, B ¼ ∂tβ̃, and G ¼ ∂tγ̃ for solving Eqs. (3) and
(5) where several time-derivative terms appear. Therefore,
in practice, eight equations are numerically solved at each
time step ΔT. The simulation shown is made with a spatial
resolution of 512 points in each direction, ν ¼ 4 × 10−11

and kdiss ¼ 140. Initially (at t ¼ 0), only λ is excited around
wave number ki ¼ 89 (in order to see the dual cascade),
with random phases, and such that jλkj2 ¼ Cðk2 −
882Þð902 − k2Þ with kx;y ∈ ½88; 90�= ffiffiffi

2
p

. The constant C
is chosen so that the total wave action is initially equal to
50. The time will be normalized in the linear GW time unit
tGW ¼ 1=ωi ¼ 1=ki (characteristic time of the initial exci-
tation). We take ΔT ¼ 10−5tGW, which is relatively small
but is necessary to avoid numerical instabilities and to
ensure the conservation of invariants during the primary
phase. The present simulation parameters appear to give the
most representative illustration of the processes we study
(we have performed a large number of simulations with
various values of these parameters).
Results.—Figure 1 shows the global evolution in time,

i.e., the root mean square (rms) values, of the basic fields α̃,
β̃, and λ. We see that α̃rms and β̃rms are strongly correlated
with two distinct stages. At the first stage, until ∼3500tGW,
we see two almost identical signals in which a slight growth
is superimposed with oscillations with a typical period of
100tGW. After that, the signals become different from each

FIG. 1. Time evolution (rms values) of the basic fields α̃, β̃, and
λ (inset).
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other: the high-frequency oscillations remain, but in addi-
tion, there appear long-scale oscillation (with a period
about ten times longer) in which α̃rms and β̃rms oscillate in
counterphase. At the large scale, both signals increase over
time reflecting local amplifications of α̃ðx; yÞ and β̃ðx; yÞ.
Overall, α̃ and β̃ behave like twin variables with similar
dynamics. The behavior of λrms (shown in the figure inset)
and γ̃rms (not shown) is different with no significant
increase in amplitude and faster oscillations with a period
close to tGW.
In Fig. 2, we show the temporal evolution of the

normalized energy E (with initially Eðt ¼ 0Þ ¼ 28185).
Two phases are clearly present. First, the energy is con-
served until ∼3500tGW. This phase corresponds to the time
interval needed to develop a direct energy cascade and to
reach the small dissipative scales (see Fig. 3). This
observation can be seen as evidence of the accuracy of

the numerical code (the wave action is also conserved
during this phase). Then, the energy slowly decreases. To
appreciate this decay law, a log-log plot is given in the
inset: this reveals a power law decay in time. This type of
behavior is classical in freely decaying (strong or weak)
turbulence in the presence of a direct cascade (see,
e.g., [62,63]).
The evolution in time of the 1D wave action spectrum

N1dðkÞ ¼ 2πk
R
2π
0 NðkÞdϕ, where ϕ is the polar angle in

the k space, is displayed in Fig. 3. The spectra are
compensated by the theoretical prediction k−2=3 [48].
The propagation toward small scales is interpreted as a
signature of a direct energy cascade. If we come back to
Fig. 2, we see that the spectrum shown in light green is
close to the end of the plateau: this is the moment when
the dissipative scales are reached. Afterward, the small-
scale propagation of the spectrum is stopped. On the other
hand, the development of the front is interpreted as an
inverse cascade of wave action, which could be viewed
as a strongly nonequilibrium Bose-Einstein condensation
process. We see that beyond 3500tGW (from red curve
onward) the inverse cascade is preserved with a further
expansion of the inertial range characterized by a bump in
the front propagation (see, also, Fig. 4). We can already
see the presence of a plateau and conclude that our result
is qualitatively in agreement with the theoretical predic-
tion. The 1D spectra 2πk

R
2π
0 jα̃kj2dϕ and 2πk

R
2π
0 jβ̃kj2dϕ

are shown in dotted lines: as expected, α and β are much
smaller than λ [since N1dðkÞ ∼ k2jλkj2] in the inertial range
of WT. However, we observe a significant selective
amplification of α and β at large scales, which is not
described by the weak WT theory. Respectively, it means
an amplification of the metric components g11 and g22 at
the large scales while g00 and g33 remain in fast oscil-
lations only (see, also, Fig. 6). For the GWs, such large-
scale variations of g11 and g22 are perceived as a slow

FIG. 2. Time evolution of the normalized energy. Inset: the
same variation in log-log reveals a decay close to t−1=4. The
colored vertical lines at the top correspond to the times chosen to
plot the spectra in Fig. 3.

FIG. 3. Time evolution of k2=3N1dðkÞ (solid lines) with the
initial spectrum in black dashed line. Corresponding times are
given in Fig. 2. The same spectrum, renormalized in scale and
amplitude, is shown for an inviscid simulation at a resolution of
1024 points (blue dashed line). The 1D spectra 2πk

R
2π
0 jα̃kj2dϕ

and 2πk
R
2π
0 jβ̃kj2dϕ are also shown (dotted lines) at the final time

of the simulation (at a resolution of 512 points) and compared
with the power law k−3.5.

FIG. 4. NðkÞ around the final time of the simulation (mean over
4 times). The center of the domain of initial excitation is indicated
by the symbol “o”.
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variation of the scale factor of the underlying space, i.e.,
its expansions and contractions. Superimposed to these
plots, we also show the spectrum of an inviscid (i.e.,
ν ¼ 0) simulation at 1024 points resolution with an initial
excitation at ki ¼ 128 (with same time step and type of
initial condition). The simulation is stopped before reach-
ing the smallest scales. The spectrum is renormalized in
scale such that the initial excitation is moved to 89. The
purpose of this plot is to confirm the dual cascade while
we are still in the conservative phase, with a plateau at
large scales and, at small scales, a wider inertial range
compared to the 5122 simulation.
In Fig. 4, the normalized 2D wave action spectrum is

shown around the final time of the simulation to appreciate
the number of modes excited during these cascades. The
presence of a bow at large wave numbers can be seen as the
signature of the dissipation which starts abruptly at k ¼ 140.
This plot reveals that a large domain in Fourier space is
affected by the cascades which start around the symbol “o.”
Note that we are still far from the axes, and no condensation
is found. Note, also, a dark spot at the smallest excited wave
numbers corresponding to a spectrum amplification. It points
out an overshoot nature of the propagating condensation
front with a significant localized lump of wave action
moving toward the smaller k’s. Also, the 2D spectrum looks
like a wedge or angle, which means that the propagation
toward the large and the small scales takes place without
significant spreading in the angular distribution of the wave
propagation, i.e., without a full isotropization.
WT is a state dominated by waves of weak amplitude; all

nonwave initial disturbances eventually die out. Such a
system is characterized by a very specific ω-k spectrum that
concentrates near the dispersion relation curve of the wave in
question [17,18,21,23,30,32,39,41,44]. It is also the case for
GW turbulence, as we can see in Fig. 5 where a ω-k
spectrum is plotted. This plot is obtained by taking the time
evolution of the canonical variable ak (real part) for
t=tGW ∈ ½17 000; 20 000�. Then, we analyze signals corre-
sponding to k ∈ ½1; 140�, such that kx ¼ ky. A Fourier
transform in time is then applied to each signal weighted
with a Hamming function. The modulus squared of each
signal normalized by its maximum is, then, plotted. We see

that a signal is obtained along the dispersion relation (dotted
line) confirming the wavelike character of this turbulence.
In Fig. 6, the four metric components are plotted at the

final time of the simulation. We see that the dominant
components are g11 and g22 whose large-scale oscillations
are approximately in antiphase. The two other metric
components g00 and g33 are characterized by relatively small
small-scale fluctuations around −1 and þ1, respectively.
These fluctuations remain relatively small during the entire
simulation. We have found that g11 and g22 behave similar to
each other during the simulation with, mainly, an anticorre-
lation and a gradual increase of the fluctuations. This
observation is consistent with the behavior observed in
Fig. 1, where an increase of α̃ and β̃ is also reported.
The final time reported, here, is a reasonable limit to stop the
simulation because the original equations used (3)–(5) are
only valid for weak GWs (which correspond to small
fluctuations around �1 of the metric components).
Interestingly, this final time, t ∼ 104tGW, corresponds to
the expected time required to develop the weak turbulence
regime when the small parameter ϵ used for the expansion is
∼0.1: indeed, a phenomenological evaluation gives a typical
cascade time τcascade ∼ ϵ4tGW for four-wave interactions
(whereas it would be ∼ϵ2tGW for three-wave interactions)
[5]. Note that this is an extremely slow timescale from a
numerical point of view that limits us to a relatively low
spatial resolution (which, however, proved to be sufficient to
obtain physical results, here) [64].
Conclusion.—In this Letter, we have reported the first

DNS of GW turbulence. Specifically, the weak regime was
studied for which analytical predictions exist. By using both
physical and Fourier spaces, we have been able to show that
WT can emerge from an initial excitation of the space-time
metric with a dual cascade of energy and wave action. This
behavior is understood as the result of four-wave resonant
interactions of the 2 ↔ 2 type for which the wave action
is an invariant. Further, we have observed a new effect which
is beyond the weak WT predictions—emergence and

FIG. 5. ω-k spectrum of wave action. The dotted line corre-
sponds to the dispersion relation of a GW.

FIG. 6. Metric components g00 (blue), g11 (orange), g22 (green),
and g33 (red) at the final time of the simulation. g00 and g33 have
been vertically shifted by þ1.9 and þ0.15, respectively.
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continuous amplification of strong large-scale fluctuations of
metric components g11 and g22 while the other components
exhibit only weak small-scale oscillations. In particular, the
temporal component g00 remains close to one which
provides a natural cosmic time for weak GW turbulence.
The amplification of g11 and g22 limits our study since,
initially, weak WT tends to become strong at large scales
[53]. In principle, the regime of strong WT can, then, be
studied numerically with the metric (1)–(2) (whose form is
preserved at all times as proved by [55]) by including all
nonlinear terms of Einstein’s equations.
The main conclusion of this Letter is that it is possible to

produce turbulence in general relativity. Unlike the
classical hydrodynamic turbulence, it does not consist of
randomly interacting vortices but, rather, it takes a form of
random interacting waves—the wave turbulence. Further,
we show that GW turbulence is a dual cascade system.
Namely, in addition to the direct energy cascade, there is an
inverse cascade of wave action. The latter is important as it
may shed light on the processes in early Universe [53]. We
can also mention a strong similarity to elastic wave
turbulence in the high tension limit. Indeed, both problems
involve four-wave interactions with an inverse cascade of
wave action [32]. This similarity could be a motivation to
pursue the comparison in an analog laboratory experiment
to better understand strong GW turbulence in cosmology
and the formation of a metric condensate.
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