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We propose that a broad class of excited-state quantum phase transitions (ESQPTs) gives rise to two

different excited-state quantum phases. These phases are identified by means of an operator C, which is a
constant of motion in only one of them. Hence, the ESQPT critical energy splits the spectrum into one
phase where the equilibrium expectation values of physical observables crucially depend on this constant of
motion and another phase where the energy is the only relevant thermodynamic magnitude. The trademark
feature of this operator is that it has two different eigenvalues +1, and, therefore, it acts as a discrete
symmetry in the first of these two phases. This scenario is observed in systems with and without an

additional discrete symmetry; in the first case, ¢ explains the change from degenerate doublets to
nondegenerate eigenlevels upon crossing the critical line. We present stringent numerical evidence in the
Rabi and Dicke models, suggesting that this result is exact in the thermodynamic limit, with finite-size

corrections that decrease as a power law.
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Introduction.—A quantum phase transition happens
when an abrupt change in the ground state of a physical
system is observed. The corresponding critical point is
signaled by a nonanalyticity, and two different phases can
be identified by equilibrium measurements [1]. Excited-
state quantum phase transitions (ESQPTS), a generalization
of this phenomenon to excited states, have been the focus of
intense research during the past years [2,3] (for a recent,
excellent review, see [4]). ESQPTs give rise to a great
variety of dynamical consequences, like huge decoherence
[5,6]; singularities in quench dynamics [7-11], feedback
control in dissipative systems [12], quantum work statistics
[13], and localization [14]; symmetry-breaking equilibrium
states [15,16]; universal dynamical scaling [17]; dynamical
instabilities [18]; irreversibility without energy dissipation
[19]; and reversible quantum information spreading [20].
They are somehow linked to thermal phase transitions
[21,22] and dynamical phase transitions [23,24]. They can
be identified by their consequences in the classical [25] and
semiclassical [26,27] phase-space dynamics [28,29], as in
the singularities of the density of states [30]. Its signatures
have been theoretically and experimentally observed in
several physical systems [31-36], and its connections with
quantum Lyapunov exponents have been explored [37-39].
However, no physical features of standard phase transitions
have been identified yet.

In this Letter, we show that a typical feature of a large
class of ESQPTs splits the spectrum into two different
excited-state quantum phases. These are identified by an
operator which is a constant of motion in just one of them
(usually, below the ESQPT). This constant of motion
signals to which part of the semiclassical phase space a
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given quantum state is attached and assigns it a conserved
quantum number, with important thermodynamic conse-
quences. We present general arguments and illustrate our
findings with the paradigmatic Rabi (RM) [40,41] and the
Dicke (DM) [42-46] models, discussing dynamical and
thermodynamic consequences.

Constant of motion.—We start from the classical limit of
a quantum system with Hamiltonian H(x), where x € R%
accounts for all relevant canonical coordinates and v € N is
the number of classical degrees of freedom. ESQPTs are
caused by fixed points x,. of the classical Hamiltonian flow,
VH(x,.) = 0, atacritical energy E. = H(X,.) [4]. The main
result of this Letter is the following conjecture.

Suppose there exists a dynamical function f(x) satisfy-
ing the following two properties: (i) f(x.) = 0 and (ii) on
one side of the transition (say, E < E,), every trajectory
verifies either f(¢) = f(x[t]) < Oor f(¢) > 0, V1, depend-
ing on the initial condition, but this is no longer true on
the other side. Then, there exists a quantum operator,

A A

C = sgn[f(X)], which is a constant of motion only in the
first of these two phases, E < E,.

Here, the sign of an operator f is defined
sgn(f) = Fsgn(D)F~' = Fdiag[sgn({d;})]F~', where D
is a diagonal matrix whose elements {d;}, are the eigen-
values of f‘ and F is a matrix whose columns are the
eigenvectors of f‘ Hence, the operator C has only two
eigenvalues 1 and, therefore, represents a Z, symmetry in
this phase. Notwithstanding, it is unrelated to any exact
discrete symmetry of a given model, and, thus, it is not
linked to spontaneous symmetry breaking observed in
some phase transitions. As representative examples of
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systems fulfilling the conditions for the above conjecture,
we quote the Lipkin-Meshkov-Glick model, the Rabi and
Dicke models, spinor Bose-Einstein condensates and Bose
mixtures in a double-well potential, the coupled top, and
the two-fluid Lipkin model [2,5,6,12,15,22,25-28,43,47—
50]. In all these systems, there is an ESQPT at E = E,
below which the classical phase space is split into dis-
connected wells. Then, C indicates to which classical well a
quantum state belongs.

To get a more precise definition of these excited-state
quantum phases, we write the quantum Hamiltonian
H = S, E,P,, where P, is the projector onto the eigen-
space with energy E,. Thus, [C,P,] =0, Vn/E, <E.,
and [C, P,] #0, ¥V n/E, > E,. This means that (C) is con-
served by any time evolution verifying that (H) = E < E,.,
but this conservation rule no longer holds if E > E..
Hence, there exists a phase in which the expectation value
of this observable must be taken into account to properly
describe both equilibrium [51] and nonequilibrium [52]
thermodynamics. By contrast, the other phase is charac-
terized by standard thermodynamics.

Numerical test—As an illustration, we perform a
numerical test on a generalization of the RM and the
DM. Both models account for the interaction between a
monochromatic bosonic field and N identical two-level
atoms. The Hamiltonian reads

N n 2 A Nw
— mAath i At Wi 0 /A A ’
H, = wa'a + wy z+—\/ﬁ(a +a) A a(a" +a)
(1)

where @' and & are the appropriate bosonic creation and
annihilation operators, respectively, and Jj= (jx, jy, J .)is
an angular momentum. The total angular momentum Fis
conserved. The dynamics of a set of N identical two-level
atoms is recovered with j = N/2, which we use. Then, w,
represents the constant splitting of the atom eigenlevels,
while o represents the frequency of the photons to which
atoms are coupled by the parameter A.

The case a =0 is the standard RM and DM. The
Hamiltonian H,_, has a discrete Z, symmetry, called
parity, allowing to separate eigenstates according to

N|E,.) = +|E,.), where TIl=expliz(j+J,+a'a)]
and 7:(0|E,, ) =E,+|E, ). Ifa#0, IT is not conserved:
[H o X1T] # 0.

Equation (1) admits two different thermodynamic limits
(TLs): (i) In the DM, the number of two-level atoms goes to
infinity, N — oo, fixing wg/w < o0; (ii) in the RM,
wy/w — oo, fixing N =1 [48]. Thus, in the RM (DM),
we set N=1 (w=wy=1) and let wy/@w (N) be the
scaling parameter, which we denote simply A. We use the
reduced energy scale € = E/(wpj). In both models, there

exists a certain coupling 4. only above which ESQPTs start
appearing at a certain critical energy [53].

These models fulfill the condition for the existence of the
operator C. From their semiclassical energy surfaces
[15,43-46,53] [Figs. 2(a) and 2(d)], we propose that the
relevant dynamical function is f(x) = ¢ — q.(a, 1), where
g.(a, 1) is the canonical coordinate corresponding to the
ESQPT critical energy. If a = 0, ¢.(0,4) =0, V4> 4. if
a#0, g.(a, ) is a complicated function [53]. Hence, C
takes the form

C = sen[q — go(a. 2)], (2)

where § = (a* + a)/v2inthe RM and § = (a* + a)//2j

in the DM.

To test this hypothesis, we work with 1 = 3,/wa,/2
and two different values of the perturbation «@; in both
cases, 4> 4,, so that ESQPTs exist. We chose an
initial state |¥(r = 0)), with ten consecutive eigenstates
equally populated. Then, we calculate the time evolution
(C(1)) = (W(1)|C¥(r)) for M =100 time steps. Next,
we calculate its mean, accounting for the long-time
average (C) = (1/M)>_M (C(1;)). Finally, we account
for the fluctuations around this value using the width
o= (1/M)>M, (C(1;)) — <é))2 This protocol is repea-
ted for different initial states with increasing energy values,
probing different regions of the spectrum. Results are
shown in Fig. 1. In the RM we work with N = 300
and @€ {0,1/v/3}, while in the DM N =40 and
a € {0,1/2}. We can see that 62 jumps abruptly from 62 =
0to 0(23 > 0 at the corresponding ESQPT criticalities in the
RM for both values of a. This means that C stops being
constant at this critical energy. The jump is not so abrupt in
the DM, because N is one order of magnitude smaller. The
different behavior of 0(23 above the ESQPT in the RM and
DM is presumably linked to their different classical degrees
of freedom; however, this does not affect the results of this
Letter [53].

Rabi model Dicke model
0‘3 i T T I T T i T 7'0. I T T
0o | =30 P‘mi,ﬂ” afl/g. X —40
ao 4T i .
S TR S | (SR
o=
-3-2-10 1 2 -3-2-10 1
€ €
FIG. 1. Variance of the time evolution (C()) as a function of

energy with 1 = 3,/ww,/2 > . for the RM (a) and DM (b).
Black (green) dashed lines mark the ESQPT critical energy for
a=0 (a=1//3 in the RM and a = 1/2 in the DM) [53].
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Properties of the low-energy phase.—Our next step is
to derive some mathematical consequences of the
previous facts. We begin with the case a # 0. Figure 2(e)
shows the semiclassical density of states ¢(¢) =
(1/N)[1/@2x)"] [ dp [ d'q5[e — Hy(p.q)] for the RM
with a =1/ \/§ We observe two ESQPTs, marked by
(1) a logarithmic singularity at €. ~ —0.96 and (ii) a finite
jump at €., & —2.46. Figure 2(d) shows the corresponding
semiclassical phase space. Below e¢.,, there is a single
connected region of constant energy curves, on the left.
At e.,, a disconnected second region appears on the right.
At €., both become connected.

Figure 2(f) shows the quantum diagonal expectation
values of C. Our conjecture applies for € < e.: In this
region, eigenstates of the Hamiltonian are also eigenstates
of C, and, therefore, (E,|C|E,) = +1. But this operator also
provides a description for the other ESQPT. Below .., all
the eigenstates verify (E,|C|E,) = —1. This means that C is
not necessary to account for the physics of observables in
equilibrium: Any initial state is characterized by < C>=
—1 within this region, as all quantum eigenstates are
attached to the left well of the classical phase space. By
contrast, Fig. 2(f) also clearly shows that the conditions for
the eigenstate thermalization hypothesis [60-65] are not
fulfilled if €., < e < e.—(E,|C|E,) jumps abruptly from

Rabi model, « =0 Rabi model, o = ==
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FIG. 2. (a)-(c) Semiclassical phase space, density of states, and
expectation values of C in quantum eigenstates for a =0
(N =300 and A = 3,/@w,/2 > 1) in the RM. (d)—(f) The same
for @ = 1/+/3. The vertical dashed lines mark the critical energies
€.(a=0)=-lande.(a=1/v3) ~-0.96 (black) and €, (a =
1/4/3) ~ —2.46 (green). If & = 0, both wells are symmetric and
at the same energy. If a#0, the second energy well is
inaccessible if ¢ < ¢.,. Black curves in (a) and (d) correspond
to the ESQPT energy connecting both wells.

—1 to 1. This is because quantum eigenstates can belong
either to the left or to the right well in this region.
Therefore, the energy is not enough to describe equilibrium
thermodynamics, and additional information, given by the

A

knowledge of (C), is also required.

If a=0, there is an additional Z, symmetry:
[Hy_0.11] = 0. It can be easily shown that C changes
the parity of any Fock state with well-defined parity
[53]. This means that I and C cannot be diagonalized in
the same basis as they do not commute: [C, TT] # 0. Hence,
as [P,.1] = [P,.C] = 0 for every energy subspace with
E, < E, there exist two different bases diagonalizing this
part of the Hamiltonian, and, thus, all energy levels in this
excited-state phase must be doubly degenerate. By con-
trast, IT is the only discrete Z, symmetry if £ > E_, and,
therefore, energy levels are not expected to be degenerate
in that phase. This phenomenology has been observed
in a large number of models displaying ESQPTs [4-6,
49,50,66-70]. As a consequence, the eigenvectors of ¢
are (|E, ) +|E,_))/V2, and its expectation values are
<E,l$_|é|E,,.+> = =+1, due to an arbitrary sign coming from
the relative phase between the degenerate eigenstates |E,, )
and |E,_) [53]. This prediction is illustrated in
Figs. 2(a)-2(c). The density of states in Fig. 2(b) shows
that there is a single ESQPT at ¢, = —1 in this case. It
marks the energy at which the two equivalent wells in the
classical phase space [Fig. 2(a)] become connected; below
€., we have two disconnected, symmetric wells. Figure 2(c)
clearly shows that our conjecture indeed holds below
this energy: |<E”‘_|é\En,+)| =1 for E < E,., whereas
(E,_|C|E, )| # 1 for E > E..

Finite-size scaling.—Physically, this last case is more
challenging, since we need two noncommuting discrete
symmetries, I1 and C, to build a complete description
of thermodynamic equilibrium. Hence, we work with
a =0, which has been the object of recent experi-
mental works [71,72], to perform a stringent test on
our conjecture. As explained above, it implies energy
doublets |E, , — E,_| =0, and also |(E, |C|E,_)| =1
if E, < E,, in the TL. To study finite systems, we define a
finite-size precursor of the ESQPT as the energy (N, 7)
above which the gap AE, = |E, ., — E, _|/(s) >y or the
difference 1 — |(E, . |C|E,_)| > y for a given small bound
y > 0. Here, (s) is the mean level spacing calculated within
a window of ten eigenlevels around the target energy.
According to our conjecture, limy_, (N, y) = €, for any
(small) y; for finite systems, the closer the energy to the
ESQPT, the larger A is needed to get the above indicators
below a given bound [53]. In Figs. 3(a) and 3(c), we test
this result with e(\,y) extracted from the condition on
|<En’+|@|En’_)|; in Figs. 3(b) and 3(d), £(V, y) is obtained
from the condition on AE, instead. We can clearly see
that [e(NV,y) —e.| x N7, with g > 0, in all cases, with
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Rabi model, « = 0 Dicke model, o =0
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FIG. 3. Finite-size scaling of the ESQPT precursor (N, y) for

different bounds y (points), extracted from (a),(c) the expectation
values of C and (b),(d) eigenlevel degeneracies [53]. Solid lines
represent the best linear fit to the points.

bounds ranging from y = 107!% to y = 10~*. This strongly
suggests that, in the TL, e(N,y) — ¢, following a power
law in V. In other words, the finite-size scaling around e,
behaves like in standard quantum and thermal phase
transitions.

Thermodynamic consequences.—Finally, we tackle the
thermodynamic implications by studying the properties
of observables in equilibrium in the DM with a =0
(similar results are obtained in the RM). We start from
its most general ground state at A;; = %/16 > ., given
by [¥(t=0)) = /PlEcs.+) + e?v/T=pl|Egs.-), where
Ho(4ini)|Egs.+) = Egs|Egs.+), 0<p<1, and 0 < ¢ <2x.
In this state, (¥(0)|C|¥(0)) = 2,/p(1 — p) cos ¢p. We then
perform a quench, 4;,; — A,, S0 the time-evolved density
matrix p(7) = |P(z))(¥(7)| reads (A = 1)

= Z Z cm,kC:fe_i(Em‘k_En'f)t|Em,k> <En.f|’ (3)

mn kf=+

where ¢, = (E,,x|¥(0)) [53], and all the eigenenergies
and eigenstates after the quench are those of
Ho(Asin)s Ho(Ain) |Epi) = En sl Ems)-

First, we consider the time-evolved expectation value
(C(1)) = Tr[p(r)C]. From Figs. 3(a) and 3(c), we can
conclude that only the terms with m =n and k = -¢
contribute to (C(¢)) in the TL, since (E,, |C|E, )=
+6,,,(1=6,,) if E,,, E, < E,; from Figs. 3(b) and 3(d),
we also conclude that this contribution always remains
constant and depends exclusively on the initial condi-
tion encoded in c,, s, (C(1)) =2, ¢ty cn_(Ey|CIE, ).
Hence, the abrupt change inferred from Fig. 3 implies a
change from constant to nonconstant (C(1)) at the critical
energy in the TL [53].

A further consequence is that the long-time average
of the time-evolved wave function in this phase [73],

Dicke model, a =0
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FIG. 4. Long-time averages of (a) }x and (b) S following a
quench Ay =34, — A, = 34, in the DM (a = 0) from initial
states with different p and ¢.

5: hrnf_)oo (1/7) & dip(t), generally depends on both
(1 (C)—not only on the energy as would be
expected in the microcanonical ensemble. The long-

time average of a typical observable O is, therefore,
(0) =lim,_ o, (1/7) [¢dt(®(1)|O]¥(1)) = Te[pO].  To
explore this, we choose A, = 34.; then the energy of
the nonequilibrium state is eg, = (¥(0)[Fo(Aan)|P(0))/
(wgj) ~ =3.15 < €. = —1. We monitor the behavior of two
representative observables J, and S(z), after letting the
system relax during a time ¢ = 10° us, by means of 7 = 10°
equal steps, considering the realization of the DM dis-
cussed in Ref. [52]. Here, S(t) is the entanglement entropy:
S(1) = —Tr[py(r)logp,(1)], where py (1) = Trg|[¥(1)) (¥ (2)
with the “environment” corresponding to the photonic
radiation and the “system” being the atomic part of the
Hamiltonian.

s

We observe in Fig. 4 that both long-time averages @

and (S) crucially depend on (C) = (C). This means that the
system reaches different equilibrium states characterized by
the same energy, depending on the initial value of the
coherence between parity sectors, given by the angle ¢.
Therefore, one must take into account the expected value of
C 1o properly describe equilibrium states below the critical
energy of the ESQPT, much in the same way that in the
region €., < € < €, in the case with a # 0. We note that

neither (J,) nor (S) depend on p. Thus, they do not depend
on (IT) either, even though parity is an exact constant of
motion in both phases. Therefore, we conclude that the role
played by C in thermodynamics is much more important
than that of IT.

Finally, we remark that, after a quench onto the normal
phase, long-time averages depend on only the final energy
€5, (not shown), as expected in the standard microcanonical
ensemble [60].

Conclusions.—The main result of this Letter can be
summarized in the following phase diagram characterizing
two phases with different dynamical and thermodynamic
properties.

A phase where there exists an operator C with
two eigenvalues, Spec(C) = {1}, commuting with the
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corresponding part of the Hamiltonian, [C,P,] =0,
E, < E.. If the system has a discrete symmetry and
[C.11] # 0, then this is a broken-symmetry phase where
equilibrium states are a mixture of states with broken IT,
broken C, or both. Furthermore, thermodynamics crucially
depends on (C).

A normal phase, where C is no longer a constant of
motion. If there exists a discrete Z, symmetry, then all the
eigenstates of the Hamiltonian are also eigenstates of this
symmetry in this phase.

Additionally, ¢ provides a description of other kind of
ESQPTs, too, as exemplified by the abrupt jump in the level
density of the RM and DM with a # 0 and versions of the
Lipkin model [6,69,74].

This Letter provides a powerful framework to identify a
broad class of ESQPTs dynamically, as the number of
constants of motion abruptly changes at the corresponding
critical energy. This should entail important consequences
for nonequilibrium processes crossing an ESQPT due to the
change of conserved charges [15,52] and also for the steady
states resulting from dynamical phase transitions [23,75]. A

consequence of the noncommutativity of C and I is the
possibility to build equilibrium states in which the infor-
mation about both the population of each symmetric well
and the quantum coherence between them is recorded.

Further research is needed to determine how to link our
results with typical features of standard phase transitions,
like critical slowing down. Experimental tests involving
broken-symmetry equilibrium states [71,72] will play a
relevant role in this endeavor.
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