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Motivated by dynamical experiments on cold atomic gases, we develop a quantum kinetic approach to
weakly perturbed integrable models out of equilibrium. Using the exact matrix elements of the underlying
integrable model, we establish an analytical approach to real-time dynamics. The method addresses a broad
range of timescales, from the intermediate regime of prethermalization to late-time thermalization.
Predictions are given for the time evolution of physical quantities, including effective temperatures and
thermalization rates. The approach provides conceptual links between perturbed quantum many-body
dynamics and classical Kolmogorov-Arnold-Moser theory. In particular, we identify a family of
perturbations which do not cause thermalization in the weakly perturbed regime.
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Conservation laws play a ubiquitous role in constraining
the dynamics of complex many-body systems. This is
especially true in low-dimensional integrable systems,
where their proliferation gives rise to rich phenomena. A
striking example is provided by the quantum Newton’s
cradle experiment [ 1], which shows the absence of thermal-
ization over long timescales. The impact of conservation
laws in this so-called prethermalization regime is directly
encoded via a generalized Gibbs ensemble (GGE) [2-7]:
Each conserved quantity is associated with its own effective
temperature, leading to anomalous thermalization. This has
stimulated a wealth of theoretical activity, including the
recent extension of hydrodynamics [8—12] to integrable
systems [13—15] and its application to experiment [16,17].
For recent reviews exploring the exotic dynamics of
isolated quantum integrable systems, see [18-25].

Despite recent advances in the understanding of inte-
grable systems, real physical systems always contain per-
turbations. These may influence and destabilize the
integrable dynamics, but their effect is hard to quantify.
In the classical domain, the effect of weak perturbations is
encoded in Kolmogorov-Arnold-Moser (KAM) theory [26],
which describes the persistence of quasiperiodic orbits
under small perturbations. In the quantum many-body
domain, the scenario of prethermalization followed by slow
thermalization has been widely studied in this context [27—
42]; for recent reviews, see [43,44]. However, insights
analogous to KAM theory have been hard to establish,
and many experimentally and conceptually relevant ques-
tions remain. To what extent does quantum integrability
survive in the presence of weak perturbations? How can we
quantify and organize the dynamical effects of integrability-
destroying interactions? What are the relevant timescales?

In this Letter, we address these questions by developing a
quantum kinetic approach to weakly perturbed integrable
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models out of equilibrium. We show that the dynamics of
physical observables from short to long timescales can be
described using the exact matrix elements of the underlying
integrable model. Our findings are illustrated by numerical
evaluation of the key formulas, including the time evolution
of the average densities, quasiparticle distributions, and
effective temperatures. Embedding the kinetic approach into
a general theory, we identify dynamical response functions
which encode the timescales of thermalization. We also find
a family of integrability-breaking, KAM-like perturbations,
which do not lead to thermalization in the weakly coupled
regime. A notable insight which emerges from our analysis
is that, in one spatial dimension, thermalization and hydro-
dynamic diffusion are controlled by distinct families of
processes, which we characterize. Our findings also provide
the integrability-destroying corrections to the Euler hydro-
dynamics of integrable systems.

Setup.—We consider the general scenario in which a
spatially homogeneous one-dimensional integrable system,
described by Hamiltonian H, is perturbed by an extensive
integrability-destroying term V = [ dxv(x). The resulting
Hamiltonian is given by H = H, + AV, where A controls
the strength of the perturbation. The Hamiltonian H,, is
characterized by an infinite number of mutually commuting
conserved quantities Q;, i=0,1,2,..., including the
momentum P = Q; and the Hamiltonian Hy = Q,. In
the perturbed system, only two conserved quantities
remain: the total energy H and the total momentum P.

In order to explore the dynamics of the nonintegrable
Hamiltonian H, we consider a quantum quench from
an initial state which is stationary under H, but which
evolves under the dynamics of H. In light of the integra-
bility of H,, it is natural to take a GGE as the initial

state, whose density matrix is given by py = Z'e” Db
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Here, Z = Tr(e™ 22k ) and the f; are the inverse effective
temperatures associated with each conserved quantity Q;.
These are the most general states that maximize entropy
with respect to all of the extensive conserved quantities of
H; they, therefore, provide natural initial states for study-
ing the dynamics of perturbed integrable systems.

The quench setup described above is well suited to
studying thermalization. At long times, it is expected that
expectation values of local observables (O(x,1)) =
Tr[poe™ O(x)e~"H"] tend to the value they would take in
a boosted thermal ensemble described by H and P.
Explicitly,  lim,_o(O(x, 1)) = Z7' Tr[e A HP)O(x)],
where the stationary values f; and v are uniquely fixed
by (H) and (P). Thermalization is proven rigorously in
various situations [45-48], and if it occurs, it does so for
any perturbation strength A. From a physical perspective,
however, the most important questions are to what extent
integrability still plays a role at finite times and how the
system reaches thermalization. For small perturbations, it
could be expected that integrability strongly influences
these processes and constrains the dominant physics.

Dynamics of charges.—To see the effects of the inte-
grability-breaking term, it is instructive to examine the time
evolution of the charges Q; under the Hamiltonian H. To
lowest order in A, the time evolution of the corresponding
charge densities ¢;(x,7) can be computed within second-
order perturbation theory:

9,(4,(0.1)) = 22 /

jds<[v°(s>,QJv(0)>“, (1)

where here and throughout we set A=k =1 and we
denote the connected correlation function by (...)¢. Time
evolution on the left-hand side is with respect to the
nonintegrable Hamiltonian H, while time evolution on
the right-hand side is with respect to the integrable H,, with
VO(s) = eiflosye~iHos; see Supplemental Material [49].

A key feature of this perturbative approach is that it can
describe both the rapid onset of prethermalization and the
slower process of thermalization. As prethermalization
builds up on a A-independent timescale, the state changes
abruptly, but the conserved densities receive only small
corrections of the order of 42, as follows from Eq. (1). Asa
result, the prethermalized state is nonthermal and is, in fact,
close to a new GGE for the unperturbed Hamiltonian H,.
Afterward, the dynamics occurs over timescales of the
order of 1/A%. We will refer to this as the Boltzmann
regime. It is accessed by the formal + — oo limit of Eq. (1),
with 7 = 22t held fixed. In this limit, the unperturbed
energy density is stationary, while the 7 derivatives of other
observables take finite, nonzero values, which satisfy the
GGE equations of state. Proofs of these statements can be
found in Refs. [40,53]. Thus, in the Boltzmann regime,
the GGE continues to evolve slowly with time. The final
stationary regime is expected to occur for ¢>>1/12,

which requires going beyond the perturbative result (1);
see [31]. Nonetheless, for weakly broken integrability, the
Boltzmann regime is very long in comparison with exper-
imental timescales. Moreover, its physical properties are
fully accessible using integrability, as we now demonstrate.
Form factors.—As the right-hand side of Eq. (1) involves
time evolution under the integrable Hamiltonian H,, power-
ful techniques are available for its evaluation. The principal
idea is that the matrix elements of the perturbing operator v
can be computed by means of a spectral decomposition, in
terms of a suitable basis of eigenstates of H(,. For example,
the initial GGE can be represented by a state |p,), with
Z7'Tr(pO) = (p,|Olp,). Here, the quasiparticle density
pp(0), as a function of the rapidity 6, is fixed by the
thermodynamic Bethe ansatz [54-56]. Excited states
lpp;p. k) involve particle and hole excitations on top of
this [S7-62], where p and h indicate their respective sets of
rapidities. These diagonalize the momentum Q, energy Q,,
and other conserved quantities Q;, with one-particle eigen-
values given by «(@), €(0), and n;(0), respectively.
Performing the spectral decomposition on Eq. (1) yields

sinet 2

0:(g,(0.1)) =2 / dpdin5(6) % \(p,:p.hlv]p,)

k e
as shown in Supplemental Material [49]. The integrand
dp = dpp,(p) includes the factor p,(p) = [[pe, P1(0)-
This describes the accessible “phase space” given by the
density of holes p,(#), and likewise for p, (%) in terms of
pp(0). Here, k = > 5, k(0) = > o k(7), and similarly for
€ and 7.

The expression (2) has a simple interpretation: In
accordance with Refs. [63,64], particles and holes are in
and out states of scattering processes. The change in the
charge density (g;(0, 7)) is given by a weighted sum over all
the momentum-conserving processes, with transition rates
given by the form factors squared |(p,;p.h|v|p,)|* of the
perturbing operator, in conformity with Fermi’s golden
rule. By evaluating these matrix elements, one can obtain a
quantitative description of the thermalization process, from
short to long timescales.

Prethermalization.—The form factor approach gives a
quantitative approach to prethermalization which is con-
sistent with previous results. For example, after an inter-
action quench, the charge densities undergo fast initial
dynamics, followed by an oscillatory power-law approach
to a quasistationary regime which persists for long times.
This can be verified by applying a small ¢* perturbation to
a free massive scalar field, whose form factors can be
evaluated using the methods of Ref. [59]. The results are
provided in Supplemental Material [49]; similar numerical
results are obtained in Ref. [65].

Boltzmann regime.—After prethermalization, the approxi-
mate GGE continues to evolve in accordance with Eq. (1).
In the Boltzmann regime, the time evolution of the state is
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slow, varying over long timescales of the order of 1/4%. As
such, the change in the state can be large, with the power-law
tails describing the approach to the instantaneous GGE giving
perturbatively small corrections. In this regime, the evolution
is toward an (approximate) boosted thermal state for the final
Hamiltonian, in accordance with thermalization. Taking
t — oo, the evolution equations in this regime are given by

o
Oladp = | sV Q1O ()
where the subscript #(7) indicates that the expectation value is
taken in the instantaneous GGE. As we demonstrate in
Supplemental Material [49], a general H theorem shows that
Eq. (3) is consistent with thermalization.

The spectral decomposition (2) available for integrable
systems allows us to recast Eq. (3) as a Boltzmann-type
kinetic equation. This sums over energy- and momentum-
conserving scattering processes with arbitrary numbers of
particles. This generalizes approaches based on the kinetics
of free models [16,34,66—73] to interacting integrable
systems. Reexpressing Eq. (3) in terms of the time-dependent
quasiparticle density p,(6), which represents the time-
evolving GGE (see Supplemental Material [49]), one obtains

9ip,(0) = Ilp,](0)
X [pa(p)pp(h) = p,()pa(h)], 4)

where

B(p = h) =2x8(x)8(¢)|(pp|vlp,:p.h) P =B(h—p)  (5)

is the matrix element for particle-hole scattering processes.
In the special case of perturbations of free models,
K(0,p) = ) ocp 6(0 — @), and we have a generalization
of the quantum Boltzmann equation to include higher-order
scattering processes. If the unperturbed Hamiltonian H, is
interacting, then K also describes the effect of indirect
processes where a particle of rapidity € is created or
destroyed in the interacting background in response to a
scattering event. In this case,

K(0.p) =) K(0.9). (6)

dep

where

) LF(Q, @), (®) ] -

K(0.®) = 5(0— @)+ — ROETACIR

od
Here, F(0,®) is the backflow function representing the
effect of adding an excitation to the interacting background;
see Supplemental Material [49]. Here, we assume particle-
hole symmetry, in accordance with the usual microscopic
reversibility condition of the Boltzmann scattering kernel (5).

We show in Supplemental Material [49] that an arbitrary
boosted thermal state is a fixed point of the time evolution
given in Eq. (4), confirming the general H theorem presented
there. We note finally that Eq. (4) is an expansion in the
number of excitations, which can often be recast as a low-
density expansion. This is analogous to the LeClair-
Mussardo series for equilibrium expectation values [74],
which is observed to converge quickly.

Multiparticle scattering.—The kinetic equation (4)
generically contains infinitely many scattering processes
with arbitrarily large numbers of particles p — h. In the
absence of internal degrees of freedom, the 2 — 2 scatter-
ing processes do not contribute: These preserve momenta
by 1+ I-dimensional kinematics, so the term in square
brackets in Eq. (4) vanishes. This is consistent with the
notion that thermalization requires the nontrivial rearrange-
ment of momenta. In generic integrable models, the higher-
particle form factors are typically nonzero, thereby leading
to thermalization via Eq. (4). The ¢* theory considered
above is special, as these higher-particle form factors
vanish. As such, it does not thermalize in the Boltzmann
regime in 1 + 1 dimensions, in agreement with three-loop
results for correlation functions [75,76]. For the ¢° per-
turbation, the 2 — 4 and 3 — 3 processes contribute. In
Fig. 1, we show the time evolution of the rapidity
distribution n(@) = 27p,(6)/ cosh(d), and the first few
effective temperatures, in a ¢® quench. The results are
consistent with thermalization and illustrate how effective
temperatures may exhibit nonmonotonic dynamics.

In order to expose the relevant physics, we have
concentrated for simplicity on a perturbation of a free
model. However, an important aspect of this work is that it
applies equally well to the case of an interacting integrable
model. As an example, we consider the experimentally
relevant case of two Lieb-Liniger gases perturbed by a
density-density coupling. We consider arbitrary interaction
strengths in the low-density regime. In this case, the two
degrees of freedom allow for a nontrivial 2 — 2 contribu-
tion in the Boltzmann regime; for further details, see
Supplemental Material [49].

Nearly integrable perturbations.—Perturbations that
break integrability yet do not lead to thermalization in
the Boltzmann regime can be seen as “nearly integrable
perturbations,” in analogy with the concept from KAM
theory [26]. The ¢* perturbation of the free massive scalar
field discussed above is such an example. We show that
such perturbations exist generically. To see this, we rewrite
the time evolution (3) as

0:qi) = ([v, Qi], v), (8)

where (a, b) is a suitable inner product [77], defined by

(a,b) = / dtdx((1 - P)[a(x, )] b(0,0))c.  (9)
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FIG. 1. Upper panel: time evolution of the rapidity distribution
n(6) in the Boltzmann regime, for the free scalar field theory with
unit mass perturbed by 4/(6!) [ dx¢®(x), following a quantum
quench from 4 = 0 to 4 > 0. The initial distribution is the GGE
with f, = ¢ = 0.5, 4 = 0.1, and all other ; = 0. At late times,
n(@) approaches a thermal distribution as indicated by the gray
solid line. Lower panel: time evolution of the first three effective
inverse temperatures for the same quench, showing a nonmono-
tonic approach to thermalization. The large values of 7 reflects the
standard normalization conventions for the scalar field theory,
which effectively reduces the strength of the ¢° perturbation.

Here, a°(x,t) = e'f'a(x)e~"0! and P is the projector onto

the space of charges Q;; see Supplemental Material [49]. We
show in Supplemental Material [49] that current operators
Ji satisfying 0,q, + 0,.j, = 0, commute with the conserved
charges under the inner product: ([j, Q;], a) = Oforall a, i.
According to Eq. (8), under a perturbation v = ji, the state
remains constant throughout the Boltzmann regime.
Therefore, current operators are nearly integrable pertur-
bations. This extends the notion of perturbed integrable
models which preserve integrability in equilibrium [78-83].
For example, there exist families of integrable models,
H = H, + V,, which correspond to perturbations by current
operators, V; = 4 [ dxj,(x) + O(4%), at leading order [84].
A similar relationship holds between the sine-Gordon

model [85] and the ¢* perturbation of the scalar field.
The observation here is that thermalization is absent at
leading order, despite these models not being integrable.

The discussion above gives a natural classification of
perturbations and an associated classification of scattering
processes. Indeed, under the inner product (9), local
operators form a Hilbert space H” [77]. This admits an
orthogonal decomposition H” = Hy @ Hp, where Hy is
the nearly integrable subsector that commutes with Q;
within H”, and Hjp is the thermalizing Boltzmann sub-
sector. In the kinetic description, operators in Hpy couple
only to 2 — 2 scattering processes. These, as explained
above, do not lead to thermalization. It was shown in
Refs. [63,64] that such processes lead to hydrodynamic
diffusion instead, as they fully determine the Onsager
matrix L;; = (j;, j;) [77,86]. Thus, there is a separation
between processes leading to hydrodynamic diffusion,
associated with Hy, and those leading to thermalization,
associated with Hjp.

Thermalization and entropy production.—The late-time
dynamics near the final, stationary state is obtained by
linearizing the evolution operator [87]. In terms of the
inverse effective temperatures f;, this gives

zczjaiﬁj = _ZBijﬂj; (10)
J J

see Supplemental Material [49]. Here, we define the
Boltzmann matrix B;; = ([v, Q;]. [v, Q;]), while the static
covariance matrix is C; = 9(q;)/9p; both are non-
negative and evaluated in the stationary state. A similar
evolution equation also holds for the small deviations of
the conserved densities 6q; = (q;) — (q;),- As B;; = 0 for
either i, j = 1 or 2, the spectrum of I = BC~! always
contains the eigenvalue 0, corresponding to the conserved
modes of the Boltzmann dynamics. The rest of the spectrum
controls the rate of approach to thermalization: If it extends
continuously to 0, then the approach is polynomial, whereas
if there is a gap of size y > 0, it is exponential 5g; x e~"/*
with 7 = A72y~! [87-89]. It is notable that the timescale 7 is
determined solely by the final state, with the conserved
energy and momentum densities containing the only infor-
mation about the initial state.

In Fig. 2, we show numerical results consistent with an
exponential approach to thermalization for the ¢° perturba-
tion. Therefore, for the ¢° perturbation, the spectrum of the
Boltzmann matrix has a gap y > 0. Athigh temperatures, we
find an increasing thermalization timescale 7~ 7% with
a=3/2, corresponding to an effectively gapless regime.
In contrast, at low temperatures, we observe Arrhenius
behavior with 7 ~ ¢¥"/T corresponding to the three-body
collisions in the ¢ theory; see Supplemental Material [49].

The Boltzmann matrix determines the late-time dynam-
ics of all physical quantities. Notably, the production of
entropy near the final stationary state takes the form
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FIG. 2. Exponential approach of the entropy and (inset) higher-
order charge ¢, to their stationary values, at times 7 > 1, for the
same quench protocol as in Fig. 1. The timescale y~' ~ 3.58 x
107 is found for 8q,, and 1.71 x 107 for §s, in agreement with the
theoretical value y~!/2.

Ops = Zﬂilgi/ﬂj = ([v,logp]. [v.logp]), (11)
i.j23
where logp = —>",;0; is the entropy operator; see

Supplemental Material [49]. As the right-hand side in
Eq. (11) is quadratic in the fj;’s, if there is a gap y, the
time evolution of the entropy is also exponential, but with a
rate 2y. This is twice that found in the time evolution of the
inverse temperatures and charge densities, which we
confirm in Fig. 2.

Exponential decay can also be seen in correlation
functions, as they are determined at large times by the
conserved quantities. By projection methods, two-point
functions at scaled wave numbers k = k/A? in the final state
behave as

(010,)¢ (k. 7)

= _Za

where the matrix A 8

01 eXp lAkt FltH 0ﬂ/<02>’ (12)

»{Ji) encodes the propagation of

the conserved modes and F their decay. In particular, this
gives the Lorentzian broadening of the Drude peaks asso-
ciated with the broken charges, [ d7e™(j;j,)(k = 0,7) =
2[A(I? + @*)~'T'AC]J,; see also [42]. We observe that the
singularity in the complex @ plane that is nearest to the real
line is at a distance y. Dynamical correlation functions in the
thermal state, therefore, determine the rate of approach toward
it. A similar situation also occurs in holographic models,
where the eigenvalues of the Boltzmann matrix are analogous
to quasinormal modes; see, for example, [90]. As a signature
of the integrability of the unperturbed model, this singularity
is expected to be a branch point because of the continuum of
hydrodynamic modes parametrized by the rapidity 0.
Hydrodynamics.—The kinetic approach developed here
is applicable beyond quenches from homogeneous states,

to include integrability-destroying perturbations in the
hydrodynamic description of integrable models [13,14].
In this context, the effects of integrability breaking on
the diffusive scale were recently discussed in Ref. [42].
Here, we stress that the effects of weak perturbations are
also manifest on the larger, Euler scale. In the Euler scaling
limit x,f —> o0, 1 =0 with 7= 1%t and X = A%x held
fixed, the entropy increase of local fluid cells occurs
on Euler hydrodynamic timescales. The spectral
decomposition (4) in the Boltzmann regime adds a gener-
alized collision term 7(@) to the fluid equations,
0w, (0) + 0:[v*M(0)p,(0)] = 1(0), where v* is given in
Refs, [13,14]. This opens the door to future studies of the
crossover from integrable to nonintegrable hydrodynamics,
including the emergence of shocks, which are absent in the
former case [91-93].

Conclusions.—In this work, we have developed a form
factor approach to perturbed integrable models out of
equilibrium. We have shown that one can address a broad
range of timescales, including the approach to thermal-
ization. We have provided analytical and numerical pre-
dictions for the time evolution of physical observables,
including conserved charges, effective temperatures, and
rapidity distributions. We observe that the rate of thermal-
ization for entropy is always exactly twice as large as that
for conserved charges. We have also shown that there
always exists a family of perturbations that do not thermal-
ize in the weakly perturbed regime. It would be interesting
to verify these predictions in experiment.

All of the results contained in this Letter can be obtained
from the equations provided. The data corresponding to the
figures is available at [94].
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