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The scope of analog simulation in atomic, molecular, and optical systems has expanded greatly over the
past decades. Recently, the idea of synthetic dimensions—in which transport occurs in a space spanned by
internal or motional states coupled by field-driven transitions—has played a key role in this expansion.
While approaches based on synthetic dimensions have led to rapid advances in single-particle Hamiltonian
engineering, strong interaction effects have been conspicuously absent from most synthetic dimensions
platforms. Here, in a lattice of coupled atomic momentum states, we show that atomic interactions result in
large and qualitative changes to dynamics in the synthetic dimension. We explore how the interplay of
nonlinear interactions and coherent tunneling enriches the dynamics of a one-band tight-binding model
giving rise to macroscopic self-trapping and phase-driven Josephson dynamics with a nonsinusoidal
current-phase relationship, which can be viewed as stemming from a nonlinear band structure arising from
interactions.
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The concept of synthetic dimensions [1], where motion
in space is abstracted to encompass dynamics in spaces
spanned by internal [2–6] or discrete motional states [7–9],
has led to new capabilities for analog simulation with
quantum matter [10–34]. Under this approach, the role of
synthetic lattice sites is played by discrete internal or
motional states, and tunneling between the sites is accom-
plished by driving state-to-state transitions. The spectro-
scopic control over the resulting tight-binding model,
including direct control over tunneling phases, opens up
new capabilities for Hamiltonian engineering. By combin-
ing these new possibilities for single-particle control with
the native interactions in atomic and molecular systems
[5,6,35–39], synthetic dimensions hold much promise for
the exploration of exotic many-body physics.
To date, studies based on synthetic dimensions have

almost uniformly been restricted to the noninteracting re-
gime, or regimes in which there are mostly subtle modi-
fications to the system’s behavior [22,23,27,40]. Here,
using lattices of atomic momentum states, we observe that
the dynamics in the synthetic dimension is qualitatively
altered by the presence of nonlinear atomic interactions.
The controlled addition of atomic interactions to even a
simple one-band tight-binding model leads to a rich variety
of phenomena, including the transition to a macro-
scopically self-trapped regime and the appearance of a
nonsinusoidal current-phase relationship in phase-driven
Josephson dynamics, which we observe with single-site

resolution in the synthetic dimension. We note that
these observations can be viewed as resulting from the
emergence of a nonlinear band structure arising from
interactions [41,42]. As synthetic lattices can readily in-
corporate designer disorder, gauge fields, and other fea-
tures, these results pave the way for future explorations of
novel collective phenomena in synthetic dimensions.
Figure 1 depicts our approach based on atomic momen-

tum states [7,17]. A Bose-Einstein condensate (BEC)
containing ∼105 87Rb atoms is subjected to two counter-
propagating lasers (wavelength λ ¼ 1064 nm, wave vector
k ¼ 2π=λ) that both trap the atoms and couple the atomic
momentum states. These laser fields allow for discrete
momentum transfer to the atoms in units of two-photon
recoil momenta 2ℏk defining a set of states with momenta
pn ¼ 2nℏk and energies En ¼ p2

n=2M, with M the atomic
mass. Because the energy difference between adjacent
states pn and pnþ1 is unique, we individually address
various nearest-neighbor transitions simply by driving the
atoms with a comb of discrete frequency components. We
write a controlled spectrum of frequency components onto
one of the lasers, such that the interference between the
multifrequency beam (colored arrows) and the single-
frequency beam (black arrows) addresses two-photon
Bragg transitions between many pairs of momentum states.
This creates a lattice of states in a synthetic dimension
(momentum), where all tunneling amplitudes, tunneling
phases, and site energies are controlled by the amplitudes,
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phases, and detunings from Bragg resonance of the
corresponding laser frequency components [17]. The site
populations are all simultaneously measured via time-of-
flight absorption imaging.
We briefly summarize how atomic collisions lead to

relevant interactions in synthetic lattices of atomic momen-
tum states [35,43]. The strength of the collisional inter-
action is U ¼ gρ ¼ ð4πℏ2a=MÞρ, where a is the s-wave
scattering length (∼100 a0 for 87Rb), and ρ is the real-space
atomic density. In momentum space, the s-wave collision is
ostensibly all to all and state independent. However,
quantum statistics leads to a natural state dependence to
the interactions. A pair of atoms occupying the same
momentum-state experience a direct interaction term
u ¼ U=N. In contrast, a pair of atoms occupying distin-
guishable momentum states experience an additional
exchange energy due to bosonic exchange statistics, result-
ing in a total interaction of 2u [Fig. 1(b)].
In Ref. [35], we laid the groundwork for interactions in

momentum-state lattices and their influence on a double-
well system. Here, we explore the simplest one-dimen-
sional lattice, with uniform nearest-neighbor tunneling J
between 21 sites. Following the above discussion, the
interaction is approximately [44] described by u

P
i niðni−

1Þ=2þ 2u
P

i<j ninj ¼ UðN − 1=2Þ − ðu=2ÞPi n
2
i . This

yields, up to irrelevant energy shifts, the combined
Hamiltonian

H ¼ −J
X

i

ðc†i ciþ1 þ H:c:Þ − u
2

X

i

n2i : ð1Þ

Here, i and j index the synthetic lattice sites, and ni ¼ c†i ci
is the number operator for site i, with ci and c†i the site-i
annihilation and creation operators, respectively.
We begin with all atoms in the nearly pure BEC and

compose the Bragg frequencies such that the k ¼ 0 mode
relates to the central lattice site, as depicted in Fig. 2(a). We
note that, because each synthetic site hosts only one
discrete state, the lattice is intrinsically single band, with
a simple cosine energy dispersion and a total bandwidth of
4J. Initializing at a single site projects the atoms onto a
superposition of all eigenstates in the band structure, giving
rise to nonequilibrium dynamics and ballistic transport
across the lattice [17,21], as shown in Fig. 2(b) in the limit
where tunneling [J=h ¼ 1281ð5Þ Hz] exceeds the collec-
tive interaction shift (U=h ¼ 520 Hz).
We expect that, at weaker J, the nonlinear interactions

can compete with the tunneling and influence the

(a)

(b)

FIG. 1. Synthetic momentum-state lattices with atom-atom
interactions. (a) Two-photon Bragg transitions individually
couple atomic momentum modes along a synthetic dimension.
(b) The synthetic lattice features intersite tunneling terms
with controlled amplitude Ji and phase φi set by the Bragg laser
amplitudes and phases, lattice site energies εi set by the two-
photon Bragg detuning, and naturally occurring long-ranged and
mode-dependent atomic interactions: Atoms in the same site
experience a repulsive pairwise interaction of strength u,
and atoms in different sites have a repulsive interaction of
strength 2u.
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FIG. 2. Macroscopic self-trapping in an array of laser-coupled
momentum states. (a) Atoms initialized to a single lattice site
evolve in a one-dimensional latticewith uniform tunneling J. Self-
trapping occurs when the collective interaction strengthU exceeds
the tunneling bandwidth 4J. (b),(c) Population dynamics
for strong [J=h ¼ 1281ð5Þ Hz] and weak tunneling [J=h ¼
93.3ð2Þ Hz]. Left: data from integrated optical density (OD)
images after 18 ms time of flight averaged over five experimental
realizations. Right: dynamics from numerical simulations. (d) In-
tegrated OD images plotted vs the tunneling strength J taken at
times of t ¼ 1.5ℏ=J. (e) Standard deviation of the atomic
distributions from (d) shown alongside the simulation results.
The solid blue curve assumes the ideal Hamiltonian after appli-
cation of the rotating wave approximation, while the dashed red
curve includes residual time dependence due to off-resonant
effects. The expected self-trapping transition U=J ¼ 4 is shown
as a vertical gray line. Data for (d),(e) are averaged over 20
experimental realizations, and the error bars in (e) are the standard
error of the mean. Numerical simulations in (b),(c),(e) assume a
homogeneous mean-field energy of U=h ¼ 520 Hz.
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dynamics. In particular, when the nonlinear interaction
strength U becomes greater than the full tunneling band-
width 4J, the atoms should be prevented from spreading in
a solitonlike state. That is, tunneling from the initially
occupied mode will be suppressed by being off resonant in
energy with the other modes, a mechanism known as
macroscopic quantum self-trapping [46,47]. Figure 2(c)
shows such a lack of dynamics in the weak-tunneling
regime [J=h ¼ 93.3ð2Þ Hz], with atoms largely remaining
on the initially populated site. Dynamics in both the strong-
and weak-tunneling limits are in good agreement with
Gross-Pitaevskii equation (GPE) simulations, which, for
simplicity, approximate the trapped condensate as having a
uniform mean-field energy of U=h ¼ 520 Hz [44].
Figure 2(d) shows the transition from ballistic spreading
to self-trapping more comprehensively for a range of
tunneling rates. All data are taken at equivalent evolution
times of t ¼ 1.5ℏ=J. For large J, the ballistic evolution
leads to a bimodal distribution peaked around the �4ℏk
states. As the tunneling rate decreases and interactions
begin to dominate, the population is found to spread less far
out, eventually remaining fully within the initialized site in
the self-trapping region. By plotting the distribution width
σn for each J in Fig. 2(e), we see that it is nearly constant at
large J and that there is a rather steep turnover at low J
values, in good agreement with the GPE simulations.
This direct site-resolved observation of macroscopic

self-trapping, in excellent agreement with the Gross-
Pitaevskii mean-field simulations [44], underscores the

coherent interplay between tunneling dynamics and atomic
interactions in our synthetic lattice. We note that, while
there have been numerous explorations of self-trapping
[48–56] and other Josephson phenomena [57–64] in real-
space potentials and in few-state spin mixtures [49,65–67],
this is the first such observation in a many-site synthetic
lattice. The incredible control over synthetic lattices prom-
ises the extension to future explorations of more complex
dynamical phase transitions [68], including those of non-
ground states [69].
We now move to make use of one of the most immediate

and unique tools of synthetic lattices, the direct control of
tunneling phase [36]. Specifically, we utilize this phase
control to initialize superposition states with atoms delo-
calized over two adjacent sites and with a relative phase ϕ,
as illustrated in Fig. 3(a). We then probe the phase-driven
Josephson dynamics [46,70] in our many-site lattice by
suddenly turning on the tunnelings and allowing the
initialized wave packet to evolve for two tunneling times.
As in the case of single-site initialization, there will be a
propensity for the atoms to spread out across the lattice due
to coherent tunneling. In addition, the relative phase ϕ can
act to drive a net current of atoms in the lattice. In this case
of phase-driven dynamics, we again expect interactions to
play a nontrivial role.
We can gain some insight into the expected phase-

dependent dynamics of our initial two-site wave packets by
considering their far-field response, and by conside-
ring their distribution after two tunneling times as an
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FIG. 3. Phase-driven dynamics in a synthetic bosonic Josephson junction array. (a) Atoms are prepared in a superposition state on two
lattice sites n ¼ −1 and n ¼ 0 with equal weight and a relative phase of ϕ. Starting at time t ¼ 0, the full lattice is turned on and the
atoms evolve for a time Δt. We then measure the atomic distribution, from which we determine the mean displacement n̄ (mean position
þ0.5) and spread σn (standard deviation of position) of the wave packet. (b) In the noninteracting limit, n̄ and σn can be related to the
single-band energy EðqÞ of quasimomentum states in the synthetic lattice, as the wave packets with phase offset ϕ populate a spread of
quasimomentum states about a mean synthetic quasimomentum q0 ¼ ϕ. The plots show the band energy EðqÞ, the group velocity
vg ∝ dE=dq, and the dispersion d2E=dq2 of the synthetic lattice. (c) Integrated density patterns (after two tunneling times) vs ϕ for the
regimes of strong [left, J=h ¼ 1253ð12Þ Hz] and weak tunneling [right, J=h ¼ 156.7ð1.3Þ Hz]. (d),(e) n̄ vs ϕ and σn vs ϕ, respectively,
for several tunneling values [J=h ¼ f156.7ð1.3Þ; 257ð3Þ; 402ð3Þ; 583ð6Þ; 1253ð12Þg]. Dots are experimental data and the lines are
theory. The results for different tunneling values are offset for clarity in (d). No offset is applied for (e). The theory curves in (d),(e) are
based on a real-space GPE simulation, as described in the text. Data for (c)–(e) are averaged over ten experimental realizations, with
error bars in (d),(e) representing the standard error of the mean. The datasets in (c)–(e) were taken over a 2π range of ϕ values, uniformly
shifted in phase to correct for phase shifts acquired during the wave packet initialization, and then mapped onto a larger and redundant
4π range. These redundant regions are distinguished by a gray background.
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approximation thereof. We expect the average displacement
n̄ in the lattice after the quench time to be roughly
proportional to the group velocity vg of the initialized
wave packet. Correspondingly, the spread (standard
deviation) of the distribution after the quench σn should
correspond to the spread in group velocities of the
initialized wave packet. In the absence of interactions,
the group velocity and dispersion (spread in group velocity)
of our initialized two-site wave packets would be deter-
mined by the simple cosine band structure of the synthetic
tight-binding lattice. That is, the initialization procedure
will populate a range of Bloch-like states with an average
synthetic quasimomentum of q0 ¼ ϕ.
As shown in Fig. 3(a), the measured displacement and

spread of the final distribution thus serve as probes of the
synthetic band structure, at least in the noninteracting limit.
Figure 3(b) provides an intuitive picture for the expected
phase-driven dynamics in the U ¼ 0 limit. The measured
displacement n̄ proportional to the group velocity vg should
scale as the first derivative of the band structure, i.e., with
∂E=∂q ∝ sinðϕÞ. More generally (away from U ¼ 0),
measurement of n̄ vs ϕ probes the current-phase relation-
ship (CPR) [71] of this synthetic bosonic Josephson
junction array. Similarly, in the U ¼ 0 and far-field limit,
one expects the measured width σn to scale as the
magnitude of the second derivative of the band structure,
i.e., with j∂2E=∂q2j ∝ j cosðϕÞj.
Figure 3(c) depicts the evolved atomic distribu-

tions in the tunneling-dominated regime [left, J=h ¼
1253ð12Þ Hz] and interaction-dominated regime [right,
J=h ¼ 156.7ð1.3Þ Hz], with plots of the integrated den-
sity patterns vs ϕ. In the large J limit, where interactions
play a minor role, we indeed see agreement with the
above description: Atomic currents are driven in the
positive (negative) direction when the sinusoidal group
velocity is maximally positive (negative) for ϕ values of
π=2 (−π=2). At ϕ values of 0 and π, we find atoms
flowing equally in the positive and negative direction, and
the distribution has maximum width. As in Fig. 2, we
again observe interference patterns of the atomic density
in the inner region between right- and left-traveling wave
fronts. In lowering J and entering into the interaction-
dominated regime (right panel), we find dramatically
different atomic distributions, with an almost complete
collapse and absence of spreading, similar to the earlier
self-trapped condition. However, we find that a clear ϕ
dependence of the displacement survives, hinting at the
formation of a partially mobile soliton.
A more quantitative analysis of the phase-driven dynam-

ics is found in Figs. 3(d) and 3(e), with the ϕ dependence of
n̄ and σn shown for several J values. Even for the largest
tunneling [J=h ¼ 1253ð12Þ Hz], we observe a clear
deviation from the U ¼ 0 expectation. The measured
CPR (n̄ vs ϕ) deviates from the simple sine dependence,
instead showing a skewed form that is in good agreement

with the numerical simulation curves, which are based
upon real-space GPE simulations (solid line) [44].
Similarly, while in the noninteracting limit σn is π periodic
with ϕ due to the insensitivity to the sign of the dispersion,
we see that the distribution width is larger at the band edge
(ϕ ¼ �π) than at the band center (ϕ ¼ 0).
While the density and scattering length of our atomic gas

are fixed, we can increase the ratio U=J to explore how the
phase-driven dynamics are impacted as interactions play a
more dominant role, by simply lowering the tunneling J
(maintaining an evolution time of 2ℏ=J). For decreased
values of J (increased U=J values), we observe that the
measured current-phase response becomes further skewed
and nonsinusoidal.
For a general tunnel junction, a nonsinusoidal CPR can

arise for a host of reasons [71]. In real materials [71–75]
and in real-space atomtronic junctions [76–82], such a
skewed CPR can arise even in the absence of interactions
between the current carriers, purely from the details of the
junction. In our synthetic junction array, however, the
“junctions” are featureless, simply relating to laser-driven
state-to-state transitions. Still, even in this ideal synthetic
junction array, it is predicted that nonlinear interactions
alone can give rise to a skewed, nonsinusoidal CPR, as seen
from the theory comparisons for increasing U=J [44]. In
addition to becoming skewed, the overall amplitude of the
CPR becomes suppressed as U=J increases. This muted
response signals that the atoms of the fluid become
effectively “heavier” as the collective interactions are
increased relative to the tunneling. This can be interpreted
in terms of a collapse of the effective nonlinear band
structure as the atoms’ effective mass increases and they
behave like a collective soliton.
The dependence of the distribution widths σn on J can

further shed light on how the atomic mobility is impacted
by the increase in U=J [44]. We observe that the overall (ϕ-
averaged) values of the σn are not so different for smallU=J
values [shown for the cases of J=h ¼ 402ð3Þ Hz and 1253
(12) Hz]. For larger U=J values, we find that there is a
marked collapse of the distribution widths, similar to that
seen in Fig. 2(e). The dependence of σn on ϕ reveals
additional features. The initial asymmetry in the σn values
at ϕ ¼ 0 and �π becomes more pronounced as the
tunneling is decreased. Specifically, we find that the
reduction in the measured σn for the central ϕ ¼ 0 feature
occurs at larger J values (smaller U=J values) as compared
to the broader ϕ ¼ �π peaks. The GPE simulations show a
similar response, with the central σn peak getting narrower
and smaller before the decrease at ϕ ¼ �π. This signals a
ϕ-dependent collapse of transport, with the atoms first
becoming self-trapped for equal-phase superpositions
(ϕ ¼ 0) and then, at larger U=J, for the out-of-phase state
(ϕ ¼ �π). This behavior in our many-site array is remi-
niscent of the frequency response seen in Josephson double
wells, where in-phase superposition modes are softened by
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the introduction of nonlinear interactions, while the
out-of-phase plasma mode acquires a stiffened res-
ponse [46,51].
We note that the numerical simulation curves in

Figs. 3(d) and 3(e) are based on real-space GPE calcu-
lations [44], which naturally incorporate the influence of
the real-space trapping potential and the resulting inhomo-
geneous atomic density. This real-space treatment was
necessitated by the use of a stiffer trapping potential
characterized by a trapping frequency of 60 Hz along
the spatial axis of the synthetic lattice (as compared to
∼10–15 Hz for the data of Fig. 2). This stiffer trap
additionally led to a larger characteristic mean interaction
strength, with a value of Ū=h ¼ 1568 Hz used in the
simulation curves of Figs. 3(d) and 3(e). Importantly,
the key observations of a nonsinusoidal CPR and a ϕ-
dependent collapse of the distribution width are both found
in ideal simulations that assume a homogeneous U term
[44]. However, the real-space GPE analysis is key to
capturing several finer features, or lack thereof, in the
experimental data. Specifically, the effective spatial aver-
aging over a range of U=J leads to an overall dulling of the
ϕ-dependent collapse of σn. Similarly, GPE simulations
with a uniform U predict an intriguing reversal of the
atomic current (sign reversal of the CPR) over a range of
U=J values close to the onset of self-trapping; however, this
effect is not present in the real-space simulations. Finally,
the drift of the data minima away from ϕ ¼ 0 in Fig. 3(e)
seen for larger values of U=J stems from the real-space
trapping potential and our exploring dynamics out to times
that are not small compared to the trap period.
To conclude, we have performed the first measurements

of significant interaction effects in a many-site synthetic
lattice. These observations pave the way for the exploration
of exotic nonlinear phenomena by straightforward exten-
sions to more sophisticated synthetic lattices with gauge
fields, disorder, and non-Hermiticity.
In addition to nonlinear phenomena captured by a

classical mean-field description, atomic collisions [43]
can also give rise to quantum correlations in synthetic
momentum-state lattices, which can be explored through
number-resolved imaging [83,84]. Furthermore, the exten-
sion of synthetic dimensions studies to spin systems
[5,6,33] opens up a promising path to studying strongly
correlated matter in synthetic dimensions.
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