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We propose a quartic chiral termmxmymz∇ ·m for the energy density of a cubic ferromagnet with broken
parity symmetry (point group Td). We demonstrate that this interaction causes a phase transition from a
collinear ferromagnetic state to a noncollinear magnetic cone ground state provided its strength exceeds the
geometric mean of magnetic exchange and cubic anisotropy. The corresponding noncollinear ground state
may also be additionally stabilized by an external magnetic field pointing along certain crystallographic
directions. The four-spin chiral exchange does also manifest itself in peculiar magnon spectra and favors spin
waves with the wave vector that is perpendicular to the average magnetization direction.
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Chiral spin textures, such as spin spirals and skyrmion
crystals, are expected to play an important role in novel
information technologies [1–6]. The appearance of noncol-
linear chiral spin states is often understood as the result of an
interplay between Dzyaloshinskii-Moriya interaction (DMI)
and magnetic anisotropy [7]. Indeed, the role of DMI in
stabilizing noncollinear magnetic order has been well
established since the first observations of helical spin-density
waves in 1976 [8]. More recently, various noncollinear
textures including magnetic cones, helixes, vortices, or
skyrmion crystals have been routinely observed in a variety
of magnetic systems with broken inversion symmetry (for
instance, in MnSi, FeGe, Ir=Co=Pt, or Pt=CoFeB=MgO
[8–13]), where DMI is expected to be strong.
DMI has been first proposed [14,15] as an indirect

asymmetric Heisenberg exchange between neighboring
spins. Theoretical understanding of noncollinear magnetic
order is, however, normally achieved within the Ginzburg-
Landau functional approach that resorts to the micro-
magnetic energy functional of a magnet. On the level of
micromagnetic energy, DMI is often defined more broadly
by terms that are quadratic in magnetization but linear with
respect to magnetization gradients—the so-called Lifshitz
invariants (LI) [16]. From a symmetry point of view, terms
linear in gradients are only allowed for systems with broken
inversion symmetry.
In conducting systems, LI terms may also originate

from long-range magnetic interactions mediated by con-
duction electrons with strong spin-orbit coupling (e.g.,
from contributions to a long-range asymmetric exchange
due to Ruderman-Kittel-Kasuya-Yosida type of processes
[17–24]). The importance of this mechanism is supported
by the fact that long-range noncollinear order is indeed
mostly observed in conducting magnets.

Bogdanov and Yablonskii [25] determined possible
combinations of LIs in micromagnetic energy for several
important crystalline symmetry classes. These LI terms
lead to instability of collinear order. More recently, Ado
et al. showed that for three specific point groups for crystals
with broken inversion symmetry: Td, D3h, and C3h all LI
terms are forbidden by symmetry. The natural question to
ask is whether the broken inversion symmetry may still
destroy the collinear order in such crystals despite the
absence of LI terms.
In this Letter we answer this question positively for

the tetrahedral point group Td (which is the most symmetric
group out of the three). In particular, we demonstrate
that a lack of inversion symmetry in this group does lead
to the appearance of a non-LI type contribution w4S ∝
mxmymz∇ ·m in the micromagnetic energy density, where
the vector m is a unit vector in the direction of local
magnetization.
We use the term four-spin chiral interaction for such a

non-LI type of contribution and refer to standard LI terms
as two-spin chiral interactions. Below we demonstrate
that the four-spin chiral interaction w4S destroys collinear
magnetic order provided cubic crystal anisotropy is suffi-
ciently weak. We also demonstrate that four-spin chiral
interaction can be revealed in a collinear magnetic state by
asymmetry of the magnon spectra.
Our analysis remains fairly general and applies to a

variety of magnetic systems with tetrahedral point group
symmetry of magnetic atoms such as half-metal halcoge-
nides, spinels, pyrochlores, and Heusler alloys including
Cu3FeTe4, GaV4S8, Lu2V2O7, CrxZn1−xTe, MnxZn1−xS,
and related materials [26–32]. We expect the proposed
four-spin chiral interaction to be especially strong in
conducting magnets with large spin-orbit coupling of
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charge carriers. We also note that the cubic magnetic
anisotropy itself is also fourth order in magnetization
and is often very substantial. It is therefore natural to
expect that the four-spin chiral interaction may be equally
important, while, to the best of our knowledge, it has never
been previously proposed or analyzed.
In Table I we list the results of the symmetry analysis of

micromagnetic energy functional E½m� for a lattice with the
point group T (chiral tetrahedral symmetry). This is a
common subgroup of the point groups O and Td. One can
readily see that a two-spin chiral interaction, the bulk DMI
with the energy density wDMI ∝ m · ð∇ ×mÞ, arises in
point group O but not in Td. The bulk DMI is represented
by a particular combination of Lifshitz invariants: wDMI ∝
LðxÞ
yz þ LðyÞ

zx þ LðzÞ
xy , where LðγÞ

αβ ¼ mα∂γmβ −mβ∂γmα. The
key role of wDMI on the formation of helical spin density
waves is well established [33–36]. This interaction is
responsible for skyrmion crystal and helical spin phases
in MnSi, MnFeSi, FeCoSi, and FeGe and in many other
magnetic materials [8–11]. It has been recently suggested
that four-spin (and in general multispin) chiral interactions
may also play an important role in conducting magnets if
spin-orbit induced splitting of conduction electron bands
becomes comparable with s-d exchange energy [37].
From Table I one can also see that there exist two

possible four-spin chiral interactions in point group O and
only one in Td, where two-spin chiral terms are forbidden
[38]. Wewill see that, despite the absence of two-spin chiral
interactions, the collinear state may become unstable also in
point group Td.
Let us formulate a universal energy functional of Td

ferromagnet, E½m� ¼ R
d3r½wðrÞ −H ·m�, whereH stands

for external magnetic field measured in energy units, while
the energy density of the magnet reads

w ¼ A
X
α

ð∇mαÞ2 þ 8Bmxmymz∇ ·mþ K
X
α

m4
α; ð1Þ

where we collected all possible terms up to the forth order
in local magnetization.
The first term in Eq. (1) represents the usual symmetric

exchange, A > 0, the second term corresponds to the newly

proposed four-spin chiral interaction discussed above, and
the last term is the cubic anisotropy. Throughout the Letter
we assume that the ferromagnet is well below the Curie
temperature, hence jmj ¼ 1.
In order to see how the four-spin chiral interaction may

induce an instability of the collinear state, we consider a
generalized conical ansatz for magnetization vector,

mðrÞ¼ncosθþ½n1cosðk ·rÞþn2 sinðk ·rÞ�sinθ; ð2Þ

where n1, n2, and n ¼ n1 × n2 are mutually orthogonal
unit vectors; the wave-vector reversal, k → −k, is equiv-
alent to n2 → −n2 (helicity reversal); θ ¼ 0 corresponds to
a collinear state, while θ ¼ π=2 corresponds to a pure helix.
Remarkably, the brute force numerical minimization of
the energy functional of Eq. (1) performed recently by the
other authors [39] does indeed correspond to magnetic cone
ground state that is described by Eq. (2).
The translation r ↦ rþ Δr is equivalent in Eq. (2) to a

rotation of the reference frame through the angle k · Δr
about the n direction, which is the direction of averaged
magnetization in the cone. Translational symmetry implies
the existence of a Goldstone mode involving the rotation of
spins about n.
We further substitute Eq. (2) into Eq. (1) and average the

result over the phase k · Δr to obtain a Landau energy
density E ¼ E=V. The latter becomes a function of the
parameters k, n, and θ of the conical state (2)

E ¼ Ak2sin2θ − Bk · vðnÞsin2θð1 − 5cos2θÞ
þ K½u1ðθÞ þ u2ðθÞcðnÞ� − n ·H cos θ; ð3Þ

where we introduced

vðnÞ ¼ ½nxðn2y − n2zÞ; nyðn2z − n2xÞ; nzðn2x − n2yÞ�; ð4aÞ

cðnÞ ¼ 3ðn2yn2z þ n2zn2x þ n2xn2yÞ; ð4bÞ

u1ðθÞ ¼ cos4θ þ ð3=4Þsin4θ; ð4cÞ

u2ðθÞ ¼ 2cos2θsin2θ − ð2=3Þcos4θ − ð1=4Þsin4θ: ð4dÞ

Note that the transverse polarization condition of the
conical spiral n · vðnÞ ¼ 0 follows directly from Eq. (4a).
The four-spin interaction sets the energy scale B2=A that

defines the noncollinear order. After convenient rescaling

k ¼ Bek=A; H ¼ B2 eH=A; K ¼ B2K̃=A; ð5Þ

the energy density of Eq. (3) takes the form

E ¼ B2

A
½ðek − ek0Þ2sin2θ þ uðn; θÞ − n · eH cos θ�; ð6Þ

TABLE I. Energy density from two-spin (LI) and four-spin
(non-LI) chiral interactions in the point group T (chiral tetrahe-
dral symmetry) that is a subgroup of O (chiral octahedral
symmetry) and Td (full tetrahedral symmetry). The notation

LðγÞ
αβ ¼ mα∂γmβ −mβ∂γmα denotes the Lifshitz invariant (LI).

Two-spin (LI) Four-spin (non-LI)

O m · ð∇ ×mÞ P
α m

3
αð∇ ×mÞα

m2
xL

ðxÞ
yx þm2

yL
ðyÞ
zx þm2

zL
ðzÞ
xy

Td None mxmymzð∇ ·mÞ
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where ek0 ¼ vðnÞð1 − 5cos2θÞ=2 is a characteristic wave
vector and uðn; θÞ ¼ K̃½u1ðθÞ þ u2ðθÞcðnÞ� − k̃20sin

2θ is an
effective potential. Thus, the vector v (if nonvanishing)
defines the propagation direction of the conical spiral,
while the angle θ (if it deviates from θ ¼ 0) defines the
opening angle of the cone.
The energy density (6) has an absolute minimum at

k ¼ k0 ¼ Bek0=A. The wave vector k0 is always
perpendicular to n since v · n ¼ 0. For the noncollinear
phase (i.e., for finite k0 and θ at the minimum), the resulting
conical magnetic order is illustrated schematically in Fig. 1.
This is in contrast to the bulk DMI ∝ m · ð∇ ×mÞ that
stabilizes conical or helical states with k0 parallel to n.

The result of numerical energy minimization in Eq. (6) is
illustrated in Fig. 2 by plotting the dependence of sin θ on
both K̃ and H̃ at the absolute energy minimum. One can see
from the minimization procedure that the opening angle θ
may, at best, only slightly exceed the value π=6, while the
pure helix, θ ¼ π=2, is never reached.
For zero field and small anisotropy, −0.28 < K̃ < 0.44,

we find a noncollinear conical state with k ¼ k0 and
θ ≈ π=6. The minimum is reached for n ¼ ð0; 1; 1Þ= ffiffiffi

2
p

,
v ¼ ð0; 1;−1Þ=2 ffiffiffi

2
p

, and for the other 11 equivalent direc-
tions of n that are related by the rotation symmetries of
the Td point group (see the Table in the Supplemental
Material [40]).

FIG. 1. Schematic illustration of the magnetic cone state that minimize the energy of Eq. (6). The state wave vector is perpendicular to
the average magnetization, k · n ¼ 0, that is characteristic for the four-spin chiral interaction w4S ∝ mxmymz∇ ·m.

FIG. 2. The color plot is obtained by numerical minimization of the function Eðk;n; θÞ of Eq. (6) and represents the value of sin θ
(the span of magnetic cone) at the global minimum, provided the external magnetic field is directed as eH ¼ H̃ð0; 1; 1Þ= ffiffiffi

2
p

. The
noncollinear magnetic cone state (finite θ and k) is realized for moderate values of K̃ and H̃. The upper left panel shows the horizontal
cross section with H̃ ¼ 0, while the lower left panel shows three vertical cross sections for K̃ ¼ 0.03, 0.3, and 0.51. The angle θ
smoothly deviates from zero across the lines K̃ ¼ 2 − jH̃j, which correspond to the second order phase transition. Noisy borders for
K̃ ≈�0.5 correspond to the first order phase transition from collinear to a noncollinear state with a finite θ. The corresponding jumps
are also seen in the left panels.
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In the limit of large anisotropy, the ground state is
collinear. For example, for zero field one finds the minimal
energy density, E ¼ K=3 for K̃ > 0.44 with the magneti-
zation along a body diagonal such as n ¼ ð1; 1; 1Þ= ffiffiffi

3
p

,
and E ¼ K for K̃ < −0.28 with the magnetization along
n ¼ ð0; 0; 1Þ and symmetry equivalents. An external mag-
netic field applied in h011i (or any equivalent) direction can
additionally stabilize the noncollinear state as can be indeed
seen in Fig. 2. For example, increasing magnetic field in
h011i direction for a system with K̃ ¼ 0.51 induces the first
order phase transition to a noncollinear phase as it is
illustrated in the right bottom panel in Fig. 2.
Generally, the angle θ deviates smoothly from zero

across the lines K̃ ¼ 2 − jH̃j indicating a second order
phase transition. The noisy borders of the color plot in
Fig. 2 correspond to the first order transition that is
characterized by the competition of minima at finite θ
and θ ¼ 0 (see also the left panels).
Let us now investigate how the four-spin chiral inter-

action may affect the magnon spectra. To that end we
linearize the Landau-Lifshitz equation ∂m=∂t ¼ Heff ×m
with respect to a small variation δm. We consider a
collinear phase, where the unit vector n yields the equation
ðH − 4Kno3Þ × n ¼ 0 with no3 ¼ ðn3x; n3y; n3zÞ. Instead of
solving the resulting cubic equation we introduce the
Lagrange multiplier λ ¼ λðH; KÞ that is set by the algebraic
equation

Heff ¼ H − 4Kno3 − λn ¼ 0; ð7Þ

alongside with two independent components of the vector n.
Using the ansatz m ¼ nþ δm expðiωqt − iq · rÞ with

n · δm ¼ 0, we, then, obtain the magnon dispersion [40]

ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩq þ 4cKÞ2 þ 16K2ðd2 − c2Þ

q
− 8Bv · q; ð8Þ

where Ωq ¼ 2Aq2 þ λ, v and c are defined in Eqs. (4a)

and (4b), correspondingly, and d ¼ 3
ffiffiffi
3

p
nxnynz.

For H ≫ jKj, one finds n ¼ H=H, hence λ ¼ H and
Eq. (8) is reduced to

ωqjH≫K ¼ 2Aðq − q0Þ2 þH − 8B2v2=A; ð9Þ

where q0 ¼ ð2B=AÞv. The wave vector q0 defines the effect
of the four-spin chiral interaction on magnon spectra. For
θ ¼ 0 one formally finds q0 ¼ −k0, even though the wave
vector k0 of the spiral is irrelevant in the collinear phase.
Thus, the coefficient B can be quantified by measuring

the difference δωq ¼ ωq − ω−q ¼ −16Bv · q for the wave
vector q that is orthogonal to the magnetization direction n,
provided the vector v is finite. This clarifies the meaning of
the vector v in collinear phase as the vector that defines the
asymmetry of magnon dispersion. The absolute value of the

vector v is illustrated in Fig. 3 for different magnetization
directions n.
The largest value of δωq is observed for magnon wave

vectors q that are parallel to v, and, consequently,
perpendicular to n. This is again in sharp contrast to the
effect of the bulk DMI for which q0 ∝ n.
To maximize the effect of the four-spin term one needs to

drive the length of the vector v to its maximal value
v ¼ 1=2. This can be achieved again by applying an
external field in the direction h011i or in any other
equivalent crystallographic direction. In this case, one finds
a particularly simple result δωq ∝ qy − qz for any K > 0.
It is worth noting that the coefficient B does not enter the

magnon dispersion in the absence of external field. Indeed,
for H ¼ 0, the ground state magnetization n is set by the
sign of the anisotropy constant only. For K > 0 one finds
n ¼ ð1; 1; 1Þ= ffiffiffi

3
p

, which corresponds to λ ¼ −4K=3,
v ¼ 0, c ¼ d ¼ 1. Therefore, the magnon dispersion reads
ωq ¼ 2Aq2 þ 8K=3. For K < 0 one finds n ¼ ð0; 0; 1Þ,
λ ¼ −4K, v ¼ 0, c ¼ d ¼ 0, hence ωq ¼ 2Aq2 þ 4jKj.
Thus, the new four-spin chiral interaction term in

cubic crystals with broken inversion symmetry does indeed
lead to nonreciprocal magnon dispersion. Similarly to
the bulk DMI, it breaks the symmetry with respect to
the wave-vector reversal q → −q, but in a direction of q
that is orthogonal to magnetization. The bulk DMI leads
to q → −q nonreciprocity in the direction parallel to
magnetization.
It is evident from Eqs. (8) and (9) that the four spin chiral

interaction shifts the minimum of magnon energy q ∝ q0.
Moreover, the results suggest that the frequency ωq

becomes negative at least for H ≃ 2B2=A, provided
anisotropy is sufficiently weak, jKj≲ B2=A. Such negative
values of ωq are unphysical and indicate an instability of

FIG. 3. Absolute value of the vector v that defines the asymmetry
of the magnon dispersion δωq ¼ −16Bv · q as the function of the
magnetization direction n ¼ ðcosα sin β; sin α sin β; cos βÞ.
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the collinear order. Low-energy magnons in the presence of
noncollinear periodic ground state form a banded spectrum
that we do not analyze in this Letter.
So far we have discussed the four-spin chiral interaction

in the continuum theory limit. One possible Heisenberg
equivalent of this interaction can be constructed on a
pyrochlore lattice. Let us consider the four vertices
of a regular tetrahedron with coordinates r0 ¼ ð0; 0; 0Þ,
r1 ¼ ð0;−a=4;−a=4Þ, r2 ¼ ð−a=4; 0;−a=4Þ, and r3 ¼
ð−a=4;−a=4; 0Þ, where a is the cubic lattice constant of
the pyrochlore lattice. We further define the four unit
vectors pointing from the center of the tetrahedron to the
respective sites:

n0 ¼ ðþ1;þ1;þ1Þ=
ffiffiffi
3

p
; n1 ¼ ðþ1;−1;−1Þ=

ffiffiffi
3

p
;

n2 ¼ ð−1;þ1;−1Þ=
ffiffiffi
3

p
; n3 ¼ ð−1;−1;þ1Þ=

ffiffiffi
3

p
;

ð10Þ

which satisfy ni · nj ¼ ð4δij − 1Þ=3.
With these notations, the four-spin chiral exchange

interaction is given by the following energy:

U4 ¼ ðn0 · S0Þðex · S1Þðey · S2Þðez · S3Þ
þ ðex · S0Þðn1 · S1Þð−ez · S2Þð−ey · S3Þ
þ ðey · S0Þð−ez · S1Þðn2 · S2Þð−ex · S3Þ
þ ðez · S0Þð−ey · S1Þð−ex · S2Þðn3 · S3Þ; ð11Þ

where eα stand for the unit vectors in the chosen coordinate
frame, α ¼ x, y, z, while Si stand for spins on respective
lattice cites. The gradient expansion of U4 to the lowest
order,

SiðriÞ ¼ S½mð0Þ þ ðri ·∇ÞmðrÞjr¼0 þ � � ��; ð12Þ

and subsequent integration by parts yields the chiral four-
spin term with B ¼ −a=8S4.
In conclusion, we suggest the existence of a four-spin

chiral magnetic interaction that may be responsible for the
appearance of noncollinear magnetic order in ferromagnets
with the Td point-group symmetry. Even though the DMI
interaction between pairs of spins is possible in Td magnets
it does not lead to linear in gradient terms in micromagnetic
energy [28–31]. We demonstrate that, in this case, four-spin
chiral interactions become important. A similar situation
arises in crystals with D3h and C3h point group symmetries
that are rather common among two dimensional magnets.
Thus, taking into account possible four-spin chiral
exchange interactions is important for understanding non-
collinear magnetic order.
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