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We exhibit an exactly solvable example of a SU(2) symmetric Majorana spin liquid phase, in which
quenched disorder leads to random-singlet phenomenology of emergent magnetic moments. More
precisely, we argue that a strong-disorder fixed point controls the low temperature susceptibility χðTÞ
of an exactly solvable S ¼ 1=2 model on the decorated honeycomb lattice with vacancy and/or bond
disorder, leading to χðTÞ ¼ C=T þDTαðTÞ−1, where αðTÞ → 0 slowly as the temperature T → 0. The first
term is a Curie tail that represents the emergent response of vacancy-induced spin textures spread over
many unit cells: it is an intrinsic feature of the site-diluted system, rather than an extraneous effect arising
from isolated free spins. The second term, common to both vacancy and bond disorder [with different αðTÞ
in the two cases] is the response of a random singlet phase, familiar from random antiferromagnetic spin
chains and the analogous regime in phosphorus-doped silicon (Si:P).
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Quantum spin liquids [1–3] are of interest as topological
states of magnets. Specifically, their low-energy physics
contains unusual degrees of freedom, such as emergent
gauge fields and fractionalized excitations carrying their
gauge charges [4]. As these need not correspond to
known elementary particles, spin liquids can even make
quasiparticles with unusual quantum numbers uniquely
available [5]. In particular, these excitations can then
exhibit interesting and unusual low-energy behavior of
their own, where the bulk of the spin liquid can act as a
matrix mediating emergent interactions between them.
Although elusive in the ground state of a clean system,
these excitations are arguably the most fundamental prop-
erty of a spin liquid.
Disorder turns out to be a particularly revealing probe, as

it can lead to the appearance (“nucleation”) of such gauge-
charged fractionalized degrees of freedom already at T ¼ 0.
For spin liquids with gapless excitations, even weak
disorder can redistribute the low-energy spectral weight
[6–9]. In reverse, probing the low-energy physics of an
experimental compound can provide insights into the
amount and nature of disorder present in a particular
material [10,11]. In addition, strong disorder can drive a

quantum magnet to other unusual states, for instance, the
random singlet state familiar from the physics of random
antiferromagnetic spin chains studied in pioneering theo-
retical work [12,13] motivated by early experiments [14].
This state exhibits a random pattern of singlet bonds
between moments, and a concomitant broad distribution
of triplet excitation energies.
Crucially, our present understanding [15–22] of this

physics in one dimension rests firmly on the twin pillars
of an exact calculation for a special integrable model on the
one hand [15,22–24], and Fisher’s [15,16] asymptotically
exact renormalization group (RG) analysis of the general
case on the other hand. This RG analysis quantifies how the
distribution of effective exchange couplings broadens with-
out limit as one approaches the low-energy fixed point of the
RG. Turning to higher dimensions, experimental results on
Si:P [25–27] also admit a phenomenological random-singlet
description. However, the physics of local moments in Si:P
at still lower temperatures is expected to be different, since
strong-disorder RG studies conclude that the renormalized
disorder strength [27,28] in the low-energy limit does not
grow without bound in this three-dimensional case.
A somewhat different random-singlet phenomenology

[29–31] has been recently employed to describe [32]
several frustrated S ¼ 1=2 antiferromagnets with quenched
disorder [10,11,33–35]. This has a crucial additional
ingredient [30,32] with no analog in the original random-
singlet phenomenology of spin chains or Si:P, namely, the
formation of emergent disorder-induced local moments at
an intermediate energy; these ultimately freeze into a
random singlet state at still lower energies.
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Here, we place these intriguing new ideas on a firm
foundation with an exact calculation of such emergent
moments and random-singlet behavior in the SU(2)-
invariant version [36] of Kitaev’s [37] integrable model
of a honeycomb-lattice spin liquid. Using arbitrary-
precision numerics and analytical calculations to span
the full range of low temperatures, we study the effects
of vacancies (dilution by nonmagnetic impurities) and bond
(exchange) disorder on the susceptibility, obtaining

χðTÞ ¼ C=T þDTαðTÞ−1: ð1Þ

The Curie term C=T arises exclusively from vacancy-
induced emergent local moments that fail to form singlets.
These emergent moments are a cooperative effect involving
a large number of spins, and represent unusual quantum
analogs of vacancy-induced orphan spin textures in
classical frustrated magnets [38–43]. The second term
displays the characteristic divergence associated with a
strong-disorder random singlet phase, and is common to
vacancy and bond disorder [albeit with different αðTÞ → 0
as T → 0]. In the diluted case, it displays an interesting
crossover which we characterize fully.
The integrable model [36] studied here hosts a SU(2)

symmetric Majorana spin liquid [36,44,45] in which the Z2

fluxes are static and gapped. It has S ¼ 1=2moments S⃗R on
sites R of a decorated honeycomb lattice in which each
honeycomb site r⃗ is replaced by a triangle r⃗ consisting
of three sites R1=2=3ðr⃗Þ (see Fig. 1). The three spins of a
given triangle are coupled to each other with a large
antiferromagnetic exchange J, the largest energy scale in
the Hamiltonian. As a result, the low-energy physics is
controlled by states in which each triangle is in one of
two Stot ¼ 1=2 doublet states. These two doublets are
distinguished by the “orbital” quantum number τzr⃗ ¼ �1.
Neighboring triangles are coupled by a multispin inter-
action of strength K that is sensitive to the “orbital wave
function” of the total spin state of each triangle.

When K ≪ J, the low-energy Hamiltonian can be
written in terms of spin-half variables S⃗r⃗ ¼ σ⃗r⃗=2 (where
σ⃗r⃗ are Pauli matrices) representing the total spin of each
triangle:

HYL ¼ 1

2

X

hr⃗r⃗0iλ
Kτλr⃗τ

λ
r⃗0 σ⃗r⃗ · σ⃗r⃗0 −

X

r⃗

B⃗ ·S⃗r⃗: ð2Þ

Here, B⃗ is the external magnetic field, the first sum is over
all nearest-neighbor links hr⃗r⃗0iλ on the honeycomb lattice,
λ ¼ x, y, z denotes the orientation of the nearest neighbor
link connecting the A-sublattice site r⃗ to the B-sublattice
site r⃗0 of the honeycomb lattice, τzr⃗ is the orbital quantum
number introduced above, and τx;yr⃗ are the other two Pauli
matrices in this orbital Hilbert space.
Since a nonmagnetic impurity (missing spin) on a

triangle r⃗ of the original frustrated magnet on the decorated
honeycomb lattice leads to a nondegenerate (inert) singlet
state for this triangle, nonmagnetic impurities in the
original model on the decorated honeycomb lattice must
be modeled by omitting the corresponding Sr⃗ and τr⃗
in HYL. Thus, such nonmagnetic impurities give rise to
vacancy disorder in the effective model on the honeycomb
lattice. In addition, bond disorder in the coupling K ofHYL
arises as a consequence of quenched disorder in the
strength of the multispin interaction, so long as the intra-
triangle exchange J remains the largest coupling in the
system. In what follows, we will assume this to be true and
analyze the effects of bond and site disorder in HYL.
We begin by noting that the Hamiltonian HYL admits an

exact solution [36,37] in terms of a Majorana representation
[46,47]: σzr⃗ ¼ −icxr⃗c

y
r⃗ , τ

z
r⃗ ¼ −ibxr⃗b

y
r⃗ , and cyclic permuta-

tions thereof, where cλr⃗ and bλr⃗ are Majorana (real) fermion
operators. In the physical Hilbert space, which is charac-
terized by the local constraint Dr⃗ ≡ cxr⃗c

y
r⃗c

z
r⃗b

x
r⃗b

y
r⃗b

z
r⃗ ¼ i,

we have the identity σαr⃗τ
β
r⃗ ¼ icαr⃗ b

β
r⃗. Defining Z2 gauge

fields ur⃗r⃗0 ≡ bλr⃗b
λ
r⃗0 on λ links, the problem reduces in these

variables to three flavors of c fermions hopping on the
honeycomb lattice while coupled to a common Z2 gauge
field u that has no quantum dynamics:

HYL ¼ K
4

X

α¼x;y;z

X

r⃗r⃗0
iur⃗r⃗0cαr⃗ c

α
r⃗0 þ

h
2

X

r⃗

icxr⃗c
y
r⃗ ; ð3Þ

where B⃗ ¼ hẑ. In other words, the model reduces to a
collection of free fermion problems, one for each static
configuration of Z2 fluxes threading faces of the lattice. In
consequence, the temperature-dependent susceptibility for
the spin model, including the effects of exchange disorder
and vacancies, can be determined from the density of states
of an associated free fermion system.
The following dictionary summarizes this correspon-

dence: Physical properties of the SU(2) symmetric spin

FIG. 1. The decorated honeycomb, or star, lattice (left) is
obtained from the honeycomb on replacing every A [B] sublattice
site r⃗A [r⃗B] of the honeycomb (right) by an up [down] pointing
triangle made up of sites R1=2=3ðr⃗AÞ [R1=2=3ðr⃗BÞ].

PHYSICAL REVIEW LETTERS 127, 127201 (2021)

127201-2



model are controlled by the behaviour of a triplet of
Majorana fermions hopping on the honeycomb lattice.
The hopping matrix K has matrix elements �iKr⃗Ar⃗Bur⃗Ar⃗B
with u taking values corresponding to the ground state flux
sector (here r⃗A and r⃗B are the A and B sublattice sites
connected by the corresponding link of the honeycomb
lattice). For the pure system or with weak exchange
disorder, this is the zero-flux sector. In the diluted case,
each vacancy binds a π flux in the ground-state flux sector,
at least at low dilution [6,7,37,48–51].
We introduce canonical (complex) fermions, defined as

fr⃗ ¼ �ðcxr⃗ þ icyr⃗Þ=2, with the plus (minus) sign on A (B)
sublattice sites. The f-fermion Hamiltonian is then a tight-
binding model with hopping matrix K, single-particle
eigenenergies ϵ, and density of states ρðϵÞ. The magnetic
field h acts as a chemical potential for the f fermions, since
Szr⃗ ¼ −icxr⃗c

y
r⃗ ¼ 1=2 − f†r⃗fr⃗. Therefore, the magnetic sus-

ceptibility of the spin model is equivalent to the compress-
ibility of the f-fermion system, determined entirely by ρðϵÞ.
This conclusion is unaffected by the constraint on Dr⃗
[37,48–50] (see Supplemental Material [52] for details).
For h ¼ 0, particle-hole (chiral) symmetry of K on the
bipartite honeycomb lattice ensure that ρðϵÞ is an even
function of ϵ and the corresponding chemical potential lies
at ϵ ¼ 0. The low temperature susceptibility is therefore
controlled by the form of the fermion density of states ρðϵÞ
near ϵ ¼ 0 in the presence of disorder.
From universality arguments and previous studies of the

bipartite random hopping problem [9,53–57], we know that
exchange randomness generates low-energy states that lead
to a characteristic divergence of ρðϵÞ as ϵ → 0. The form of
this low-energy density of states has a renormalization
group interpretation in terms an infinite-disorder fixed-
point [21,22,52,55]. Site dilution is also expected to
produce a continuous contribution ρregðϵÞ similarly diver-
gent for ϵ → 0, albeit with a different functional form
[6,7,58–61]. In addition, since the tight-binding model for
diluted graphene has been shown to host a nonzero density
of topologically protected zero modes [58] (whose exist-
ence is insensitive to bond disorder), one expects that
dilution will generically lead to a nonzero density of zero
modes in the present case too, since the π flux bound to
each vacancy in the ground state flux sector is just another
form of bond disorder.
Incorporating the existence of a thermodynamically

significant density of zero modes into our parametrization
of ρ, we write ρðϵÞ ¼ ρ0δðϵÞ þ ρregðϵÞ. Measuring the
fermion energy and temperature in units of the disorder-
averaged exchange coupling Kav and using the paramet-
rizations Γϵ ≡ log10ðKav=ϵÞ and ΓT ≡ log10ðKav=TÞ, we
express the integrated density of states as a function of Γϵ

via NðΓϵÞ ¼
R
ϵ
−ϵ dϵ

0ρregðϵ0Þ.
In the generic bond-disordered case, ρ0 ¼ 0, and we

expect NðΓTÞ ¼ TαðTÞ, with αðTÞ vanishing slowly with T.

This, and the precise form of αðTÞ at low T follows from
the fact that jdNðΓÞ=dΓj for large Γ has the modified Gade-
Wegner form [53,54] a expð−bΓ1=xÞ with x ¼ 3=2 [55,56]
in the corresponding random hopping problem. For the
drifting susceptibility exponent αðTÞ, this implies vanish-
ing αðTÞ ∝ 1=Γ1=3

T in the low-T limit [62]. Thus, bond
disorder on its own gives a low temperature susceptibility
of purely random-singlet form [55].
In the site-diluted case, we compute ρðϵÞ using the

arbitrary-precision methods developed in Ref. [58]. These
methods allow us to extend to much lower energies
previous studies of site dilution [6,7], and to unambigu-
ously distinguish exact zero modes from very low-energy
contributions to ρregðϵÞ. The form of K that enter these
numerical calculations differs from the tight-binding
models for disordered graphene studied in Refs. [58–61]
due to the π flux bound to each vacancy. Representative
numerical results are summarized in Fig. 2, and backed
up by extensive additional numerical results in the
Supplemental Material [52].
Interestingly, we find that the main features of the low-

energy density of states in this site-diluted case are not
sensitive to the presence of these Z2 fluxes. Indeed, we
find NðΓTÞ ¼ TαðTÞ, with αðTÞ vanishing slowly but
nonuniversally as T → 0, with a characteristic crossover
behavior seen earlier in diluted graphene [58]: αðTÞ ∼
yðnvÞ logðΓTÞ=ΓT at not-too-low temperature, which
crosses over to αðTÞ ∼ 1=Γ1=3

T below the crossover temper-
ature Tc ∼ Kav10

−ΓcðnvÞ. Both yðnvÞ and TcðnvÞ decrease
quite rapidly with decreasing concentration nv of vacan-
cies, implying a correspondingly stronger singularity in
the random singlet form of the susceptibility for lower
values of vacancy density. As all the key features
of the low-energy physics of the bond-disordered case
are already present here, the presence of additional bond
disorder in such diluted samples does not lead to any
qualitative changes in this low temperature physics.
Returning to the frustrated magnet HYL and relating the

susceptibility of the spin liquid to the compressibility of the
canonical fermions, we obtain for T ≪ Kav

χðTÞ ¼ ρ0
4T

þ NðΓTÞ
4T

: ð4Þ

Disorder-induced low-energy fermion states with density
ρregðϵÞ are responsible for the second contribution to χðTÞ,
with its characteristic random-singlet divergence as T → 0.
For both bond disorder [55] and vacancy disorder [7], this
random-singlet form of ρreg admits qualitatively similar
interpretations in terms of pairs of would-be zero modes
that mix very weakly with each other, giving rise to low-
energy tails in ρregðϵÞ. Additionally, in the site-diluted case,
exact zero modes give rise to the first term, a Curie tail
in the susceptibility with Curie coefficient C ¼ ρ0=4.
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The Curie tail dominates over the random-singlet term at
the lowest temperatures, and reflects the presence of free
emergent moments whose spatial form factor is given by
the local density of these exact zero modes; C can be
extracted directly from the low-temperature limit of
TχðTÞ (Fig. 2).
These emergent moments extend over many unit cells,

and are very different in spatial profile from isolated free
spins. To see this, we first note that ρ0 obtained with π flux
attached to each vacancy (as is appropriate at low

temperature for HYL) is very close to the corresponding
density obtained earlier [58] in the site-diluted tight-
binding model for graphene (which differs by the absence
of these bound π fluxes) for dilutions nv ≲ 0.1. Viewing the
π fluxes as a form of bond disorder (in the signs of the
hopping amplitudes), this strongly suggests that most of
the modes contributing to ρ0 in the present case are
topologically protected, i.e., insensitive to bond disorder.
This is also consistent with earlier work [58] on diluted
graphene, which attributes the dominant component of ρ0
to topologically protected zero modes located in so-called
R-type regions of the lattice (see Fig. 3), characterized by
local sublattice imbalance and a specific structure of their
boundary; this boundary structure protects them from
mixing with other modes elsewhere in the lattice [58].
From a recent analysis of their random geometry [63],
which finds that their typical size scales approximately as
ξ ∼ n−5v at small nv, we conclude that the ground-state spin
textures associated with these emergent free moments are
spread over correspondingly large areas.
Turning to Kitaev’s original honeycomb model, we note

that the spectrum of Majorana excitations is identical to the
one analyzed here. The random-singlet contribution arising
from ρreg at small nonzero jϵj now depends on the mean
square amplitude of the corresponding wave functions at
sites adjacent to vacancies [7]. This wave function depend-
ence is expected to lead to some modification of the

FIG. 3. Vacancy disorder in the honeycomb-lattice effective
model HYL gives rise to emergent free moments, arising from
topologically protected zero modes of the Majorana fermion
excitations. Such modes are localized within “R-type regions”
[58] of the lattice with local sublattice imbalance, with several
modes typically coexisting in a single region [63]. An infinitesi-
mal z-magnetic field at T ¼ 0 immediately polarizes such
emergent moments, yielding a ground-state spin texture hσzri.
The figure displays a simple example corresponding to two such
zero modes in a R-type region seeded by the fifteen vacancies
(denoted by orange circles). Bonds K are drawn from box
distribution with 20% width around mean. Bonds outside of this
region and sites with hσzri ¼ 0 are not shown, but included in
calculation. All sites with hσzri ≠ 0 are denoted by color-coded
circles and belong to one sublattice.

10
-8

10
-6

10
-4

10
-2

T

10
-3

10
-2

T
 χ

(T
)

n
v
= 0.1

0.04 0.08
n

v

0

0.0004

0.0008

C

C

10
-10

10
-8

10
-6

10
-4

10
-2

T

10
-4

10
-3

T
 χ

(T
)-

C

f
Dyson

 f
GW

(T)

n
v

(T), y=1.64(2)

=0.075

T
c

0.05 0.08
nv

1.4

1.6

1.8

2

y

0.05 0.07 0.09nv

-8

-4

lo
g(

T
c)

FIG. 2. Top: TχðTÞ for a system with density of vacancies
nv ¼ 10%; note the saturation at low temperature, corresponding
to a nonzero Curie constant C. Inset shows the nv dependence
of C. Middle: TχðTÞ − C at nv ¼ 7.5% shows a clear crossover
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Dependence on nv of y (left) and Tc (right).
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temperature-dependent exponent αðTÞ, without affecting the
random-singlet form of this contribution, since wave func-
tions at nonzero ϵ in the random hopping problem are
expected to be localized. By an analogous argument in the
site-diluted case, we also expect that the zero-mode densityρ0
gives rise to a Curie constant C ¼ Aρ0, where the propor-
tionality constant A represents the mean square zero-mode
amplitudes at sites adjacent to vacancies. Crucially,AðnvÞ is
expected to be nonzero in the thermodynamic limit since the
on-shell zero-energyGreen’s function is generically localized
[63] at any nonzero dilution nv > 0.
Given the rather comprehensive theoretical understand-

ing achieved here, and given the existence of Kitaev
materials [51] with significant vacancy disorder, particu-
larly Kitaev materials that exhibit some signatures of
vacancy-induced random-singlet behavior [64], the ques-
tion of experimental implications naturally becomes
important. First of all, the insensitivity of our results with
regard to the choice of flux sector implies that experimen-
tally relevant perturbations whose only effect is to favor
a different ground-state flux configuration will not affect
the basic phenomenology. When perturbations endow the
fluxes with dynamics, we expect our results to remain valid
above a crossover temperature set by the strength of such
perturbations. Even with these perturbations present, our
results correctly predict the integrated spectral weight of
triplet excitations below this scale, i.e., the combined
contribution of the Curie tail and the random-singlet
excitations below this scale, along with the corresponding
signature in the specific heat. How this integrated weight is
then redistributed in specific experimentally relevant cases
is thus the key question that needs to be addressed
theoretically on a case-by-case basis, with the form of
the specific heat below this scale providing experimental
guidance. For some peturbations, this may even yield as yet
unexplored variants of cooperative physics of the low-
energy emergent degrees of freedom in a disordered,
strongly interacting topological magnet.
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