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We present an exact scheme of bosonization for anyons (including fermions) in the two-dimensional
manifold of the quantum Hall fluid. This gives every fractional quantum Hall phase of the electrons one or
more dual bosonic descriptions. For interacting electrons, the statistical transmutation from anyons to
bosons allows us to explicitly derive the microscopic statistical interaction between the anyons, in the form
of the effective two-body and few-body interactions. This also leads to a number of unexpected topological
phases of the single component bosonic fractional quantum Hall effect that may be experimentally
accessible. Numerical analysis of the energy spectrum and ground state entanglement properties are carried
out for simple examples.
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One of the most fascinating aspects of the two-
dimensional systems is the possibility of anyonic statistics,
that is both theoretically important and with promising
practical applications [1–6]. The fractional quantum Hall
(FQH) effect, realized by subjecting a two-dimensional
electron gas to a strong perpendicular magnetic field, is an
ideal platform for anyon fluids [7]. The possibility of
anyons and non-Abelians hosted by gapped topological
phases was proposed in [4,8–10], with tentative experi-
mental signals in a number of recent works [11–13]. Even
in simple FQH phases, there can be rich dynamics
involving the interaction and transmutation between differ-
ent types of anyons [14,15].
Theoretically, the statistics and dynamics of anyons can

be understood in different ways. Haldane’s generalized
Pauli exclusion principle extends the notion of bosons and
fermions by looking at the reduction of Hilbert space when
a particle occupies a state [16]. In this perspective, a “hard-
core” boson and a fermion are equivalent. It is however not
apparent if all of the statistical aspects (e.g., the complex
phases from adiabatic braiding) are captured within this
formalism. Fundamentally, the statistical properties of
anyons can be understood as complex interactions between
particles. For example, statistical transmutation with flux
attachment and various schemes of boson-fermion dualities
have been proposed [17–24]. Such dualities can be
established if there is an exact mapping of the energy
spectrum or partition function from one system to another.
It is, however, not easy to understand the “statistical
interaction” beyond the mean-field level in the field
theoretical description with flux attachment or singular
gauge transformation.
In this Letter, we use anyons in fractional quantum Hall

effect (FQHE) as the example and propose exact duality not
only between bosons and fermions, but also between

bosons and anyons. The statistical interaction between
anyons can be microscopically derived order by order,
shown to be equivalent to the few-body interactions between
bosons in the dual description. The ability to bosonize
anyons in two dimensions could be understood as a
consequence of bulk-edge correspondence [25–27] and
the chiral Luttinger liquid description [28,29] of the quantum
Hall edge. It is bosonization of the entire Hilbert space with
conformal symmetry and without non-Abelian parafermions
[17,30–32], in contrast to the approach with Jordan-Wigner
transformation on lattice systems [33]. A direct consequence
of this bosonization scheme is a large family of bosonic
FQH phases, with explicit model Hamiltonians that in
principle can be constructed exactly from the corresponding
fermionic FQH phases. These new topological phases
are dual descriptions of the familiar FQH phases of the
electrons, though they occur at different filling factors and
topological shifts.
A bosonic description for fermions.—The concepts of

this work are most conveniently illustrated on the spherical
geometry [34,35] with rotational symmetry. For gapped
topological phases, rotational symmetry can also be
relaxed, since FQH topological orders do not require
any symmetry protection [41,42]. Without loss of general-
ity we focus on spinless electrons in the lowest Landau
level (LLL). With a monopole of total magnetic flux 2S at
the center of the sphere, the number of single particle states
(or orbitals) in the LLL is No ¼ 2Sþ 1.
It is useful to define the vacuum in this Hilbert space as

the highest density state jψHi of a particular sub-Hilbert
space H within the LLL. Basis states of interest are thus
created from the vacuum by inserting the magnetic fluxes.
For example, ifH is the full Hilbert space of the LLL, then
the vacuum is the fully filled LL. All other basis inH can be
obtained by flux insertion, or the creation of holes, from the
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vacuum. The vacuum and one such basis are shown as
follows:

11111 � � � 111; 011111…111 ð1Þ

where each digit represents an orbital arranged sequentially
from the north pole to the south pole on the sphere, with “1”
indicating the orbital is occupied by an electron, and “0”
otherwise. The basis on the right has one hole at the north
pole. In both cases, electrons and holes are fermions, with
single particle orbitals that are eigenstates of the angular
momentum operator L̂z and L̂2. They thus behave like
spinors, in the sense that each electron or hole can be
represented as a spinor with total angular momentum, or
spin S, and the quantum state can be labeled as js;Si, where
s ¼ −S;−Sþ 1;…;S − 1; S is the index of the single
particle orbitals.
The fermionic nature of the electrons or holes manifests

from the L̂2 eigenstates for two particles. With more than
one particle, we define L̂α ¼

P
i L̂α;i, L̂

2 ¼ L̂2
x þ L̂2

y þ L̂2
z ,

where α ¼ x, y, z and i is the index of electrons. The total
angular momentum Stot of the two particles can be any
integer between 0 and 2S. For fermions, however, only
Stot ¼ 2S − k with odd integer k is allowed. In contrast for
bosons, k can only be even. The counting, or the number of
L̂2 eigenstates for each Stot with more than two particles
[36], are also different between fermions and bosons. Such
counting is the signature of the particle statistics.
We now show that the fermionic holes in a single LL can

be “bosonized.” Starting with a fully filled LL with Ne
electrons and as the vacuum for the holes, an insertion of
one magnetic flux creates a single hole with total spin
S1;h ¼ Ne=2. If two magnetic fluxes are inserted, we create
two holes each with spin S01;h ¼ ðNe þ 1Þ=2. The total spin
of the two holes is thus S2;h ¼ Ne þ 1 − k0 with k0 odd. The
key observation here is that if instead of treating each hole
as a fermion with spin S01;h, we can also treat it as a particle
with spin S1;h, so that the total spin is S2;h ¼ Ne − k with k
even: the holes behave like bosons. This applies for the
insertion of multiple fluxes with a fixed number of Ne: as
fermions, each hole has S01;h that depends on the number of
fluxes inserted, but they are also bosons with a fixed S1;h
that only depends onNe. In fact, when a fully filled LL with
fixed Ne is defined as the vacuum, the inserted fluxes
should be understood as “particles” of spin S1;h, since in
this way all holes have the same spin, independent of the
number of fluxes inserted.
This seemingly trivial reinterpretation has important

consequences. If we insert Nh fluxes to the fully filled
LL, with the number of orbitals No ¼ Ne þ Nh, the
Hilbert space is spanned by fermionic product states
js01;S01;h; s02; S01;h;…; s0Nh

; S01;hi with S01;h ¼ ðNo − 1Þ=2 and
s0i running from−S01;h to S01;h. The same space is also spanned
by the bosonic product states js1; S1;h; s2; S1;h;…; sNh

;S1;hi
with S1;h ¼ Ne=2 and si running from −S1;h to S1;h, where

each bosonic product state is a linear combination of the
fermionic counterpart (so an entangled many-body state of
fermionic holes, see [36]). Thus all physics in a single LL can
either be understood from quantum states of fermions (with
Ne electrons and No orbitals), or quantum states of bosons
(withNo − Ne bosons, andNe þ 1 orbitals). The twoHilbert
spaces have the same dimension.
Bosonization of anyons.—This bosonic description of

the Hilbert space can be easily generalized to anyons. An
insertion of the magnetic flux creates a fermion in the full
Hilbert space, but it will create an anyon in the truncated
Hilbert space H̃ ∈ H. The Hilbert space truncation can
either be implemented via model Hamiltonians [43], or
more generally using local exclusion conditions (LEC)
[44]. Each truncated Hilbert space corresponds to a
topological FQHE phase, which we can index with the
filling factor ν and the topological shift S [45,46]. Note we
have the relationship No ¼ ν−1Ne − S for the ground state,
which serves as the vacuum. The previously discussed full
Hilbert space and its fully filled LL as the vacuum can thus
be denoted as H½ν;S� ¼ H½1;0� and jψi½ν;S� ¼ jψi½1;0�.
Let us illustrate the duality between anyons and bosons

with the simple example of the Laughlin phase at filling
factor ν ¼ 1=3. The universal topological properties of this
phase are defined by the null space of the Haldane
pseudopotential interaction V̂2bdy

1 , denoted as H½1
3
;−2�,

spanned by the exact zero energy states [7], or Laughlin
ground states and quasihole states. Thus the vacuum, or the
highest density state for a given Ne, is the Laughlin ground
state denoted as jψi½1

3
;−2�. Insertion of the magnetic fluxes

creates anyons of charge e=3, instead of the fermionic holes
in the full Hilbert space.
It is natural to organize the Laughlin quasiholes into

eigenstates of L̂2 and L̂z, and the counting of these
eigenstates clearly indicates the quasihole subspace is
spanned by the bosonic degrees of freedom. For a single
Laughlin quasihole, it has total angular momentum
S1;qh ¼ Ne=2, same as the fermionic holes. They are
many-body wave functions in the electron basis denoted
as js; S1;qhi with s ¼ −Ne=2;−Ne=2þ 1;…; Ne=2. We
also know they are Jack polynomials, and using Ne ¼ 4
as an example, the root configurations of the five single-
quasihole states are [47]:

01001001001; 10001001001; 10010001001

10010010001; 10010010010: ð2Þ

Inserting a second magnetic flux to those root configura-
tions creates the two-quasihole states. By diagonalizing the
quasihole subspace with L̂2 we see it is more natural to treat
these quasiholes as bosons, each with S1;qh ¼ Ne=2,
independent of the total number of orbitals. Same as the
fermionic holes, for the Hilbert space with Ne electrons and
Nqh Laughlin quasiholes, we can construct an orthonormal
basis denoted as js1; S1;qh; s2; S1;qh;…; sNqh

; S1;qhi with si
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running from −S1;qh to S1;qh. Each state is a strongly
entangled state in the electron basis, but can be interpreted
as a “product state” in the bosonic quasihole basis [36].
Again the two descriptions are equivalent in H½1

3
;−2�. One

should note that for two localized Laughlin quasiholes far
apart from each other, braiding one quasihole around the
other leads to anyonic Berry phase. What we have shown
here is that for the many-quasihole states, there are always
proper linear combinations of them that give states con-
taining particles behaving like bosons, just like the case
with the fermionic holes in H½1;0�.
The bosonization of anyons can be applied to the null

spaces of model Hamiltonians of other Abelian FQH
phases, as well as Hilbert spaces defined by LEC, as long
as the counting of quasiholes is Abelian. It can also be
applied to the Hilbert space spanned by the ground state
and quasihole states of the Abelian composite fermion (CF)
states, as long as H½ν;S� and jψi½ν;S� can be properly
constructed from the CF theory by mapping the FQH
states to the IQH states of CFs (with the built-in assumption
of bulk-edge correspondence) [48–51], even in the absence
of an exact model Hamiltonian. Fundamentally, this pos-
sibility of bosonization in two dimensions is due to the
conformal mapping and bulk-edge correspondence of the
FQH fluids. All quasihole states on the spherical geometry
can be conformally mapped to the disk geometry, where the
insertion of the magnetic fluxes in the bulk is equivalent to
edge excitations at the boundary [52]. Bosonic representa-
tion of the anyons in the bulk (even for geometries without
boundaries) is thus the dual description of the density
modes of the edge of the quantum Hall fluids [see Fig. (1)].
However, if H½ν;S� is non-Abelian, one cannot fully boson-
ize the quasiholes within H½ν;S� due to the presence of
parafermions [17,30–32].
Bosonic topological phases.—For noninteracting elec-

trons in a single LL with no disorder, the Hamiltonian is
just an identity. In the dual description, even though the
statistical properties of the particles have changed, the
bosons are also noninteracting. Similarly, if we bosonize
within H½1

3
;−2� when electrons interact with V̂2bdy

1 (so that
Laughlin quasiholes are noninteracting), the resulting

bosons will be noninteracting as well. Thus in a system
with no dynamics at all, statistical interaction is also absent.
If we introduce interaction between electrons or anyons,
nontrivial interaction between bosons in the dual picture
will develop. The latter can be determined by imposing
exact mapping of the energy spectra in the two pictures, in
addition to the mapping of the many-body states we have
established. The microscopic interaction between bosons
then also captures the statistical interaction between fer-
mions or anyons in the respective (truncated) Hilbert space.
We illustrate this with the full Hilbert space H½1;0�, and

introduce V̂2bdy
1 between electrons. ForNe electrons andNh

holes, we can label the eigenstates of V̂2bdy
1 with jS; α; Nhih

and the respective energy ES;α;Nh
. Only the highest weight

states are needed so that L̂zjS; α; Nhih ¼ SjS; α; Nhih and
L̂2jS; α; Nhih ¼ SðSþ 1ÞjS; α; Nhih, with α the index
labeling the degeneracy of the highest weight states in
each total angular momentum sector. We now know that for
a bosonic Hilbert space with Nh bosons and Ne þ 1
orbitals, each jS;α; Nhih have a one-to-one mapping to a
bosonic state jS; α; Nhib with the same quantum numbers.
The effective Hamiltonian between the bosons is given as
follows:

Ĥb ¼
X∞

n¼2

X

k;αk

λSk;αk;nV̂
n-bdy
k;αk

; ð3Þ

where Sk ¼ S − k, V̂n-bdy
k;αk

are the n-body pseudopotentials
[43] with total relative angular momentum k, and αk labels
the degeneracy of the pseudopotentials. We thus require

bhSk; αk; NhjĤbjSk; αk; Nhib ¼ ESk;αk;Nh
: ð4Þ

Using different values of Nh, the coefficients of λSk;αk;n can
be computed iteratively [36]. For example, it is easy to
check that λNe;1;2 ¼ 1, and λNe−2p;1;2 ¼ 0 for integer p > 0.
In the thermodynamic limit, we can thus show analytically
the following [36]:

λSn;1;n ¼ ESn;1;n −
Xn−1

k0¼2

λSk0 ;1;k0
n!

ðn − k0Þ!k0! ; ð5Þ

ESn;1;n ¼
Xn−1

m0;n0¼0

ðm0 þ n0 − 1Þ!
2m

0þn0−1m0!n0!
ðm0 − n0Þ2; ð6Þ

where Sn ¼ ðnNe=2Þ. Here λSn;1;n is the coefficient of the
leading n-body bosonic pseudopotential with zero total
relative angular momentum. In general, λSn−2p;1;n decreases
rapidly with increasing p, but rather slowly with increasing
n (see [36]). Thus while the interaction between fermionic
holes is just a short-range two-body interaction, the
interaction between the bosons in the dual picture is
longer-ranged, with few-body interactions involving clus-
ters of bosons. The complexity of the bosonic interaction

FIG. 1. A schematic illustration of the bosonization of anyons
in 2D.
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reflects the statistical interaction between the underlying
fermions, which we can now quantify order by order.
If we choose Nh ¼ 2ðNe − 1Þ, we are at the filling factor

ν ¼ 1=3 with S ¼ −2, and V̂2bdy
1 gives the familiar

Laughlin phase. In the bosonic picture, the corresponding
filling factor is ν ¼ 2 with S ¼ 2. We will thus obtain a
previously unreported gapped topological phase with the
effective interaction Ĥb, that has the exact same spectrum
as the fermionic Laughlin phase. It can potentially be
realized in experiments, because while Ĥb seems very
artificial and hard to engineer experimentally, for gapped
phases one can have realistic interaction adiabatically
connected to the model interactions (an example is the
MR state in the second LL [53]). In Fig. (2) we show that
with a much simpler truncated Ĥb, the bosonic spectrum
highly resembles the fermionic topological phase, and low-
lying states in the ground state entanglement spectrum
captures the Laughlin edge modes as expected.
We can also define more than one vacuum for the same

topological phase. For example, if we are interested in the
Laughlin phase at ν ¼ 1=5, we can treat the states as
quantum fluids of holes created from jψi½1;0�. This is always
possible for any quantum fluids in the LLL. In the Hilbert
space of No ¼ 5Ne − 4, bosonization of the fermionic
holes maps it to the bosonic system with Ne þ 1 orbitals

and 4ðNe − 1Þ bosons, corresponding to a filling factor of
ν ¼ 4 and S ¼ 2, with the effective interaction Hamiltonian
Ĥb defined in Eq. (3) and computed from Eq. (4). Note
that ESk;αk;Nh

in Eq. (4) needs to be computed from the
bare interaction from the electrons, i.e., the Haldane
pseudopotentials V̂2bdy

1 þ V̂2bdy
3 for the case of the model

Hamiltonian at ν ¼ 1=5.
Alternatively, we can treat the states as quantum fluids

of the Laughlin ν ¼ 1=3 quasiholes created from jψi½1
3
;−2�.

Bosonization of the same topological phase as quantum
fluids of Laughlin ν ¼ 1=3 quasiholes leads again to the
bosonic system withNe þ 1 orbitals and 2ðNe − 1Þ bosons,
corresponding to a filling factor of ν ¼ 2 and S ¼ 2. This
is the same as the bosonic description of the Laughlin
ν ¼ 1=3 phase in H½1;0�. These could be two competing
bosonic phases at the same filling factor and topological
shift, each with a well-defined model Hamiltonian. It would
be interesting to see if these two Hamiltonians are topo-
logically distinct, given that they are very different with the
pseudopotential expansion [36], and are the dual descrip-
tion of the fermionic Laughlin phase at different filling
factors. The topological entanglement entropy [54,55]
could be the topological index that distinguishes between
the two bosonic phases.
Summary and outlook.—We have established that all

fractional quantum Hall fluids (including non-Abelian
ones) can be understood as quantum fluids of bosons,
when anyons (including fermionic holes) are bosonized
either in the single LL Hilbert spaceH½1;0�, or other Abelian
sub-Hilbert spaces. From the bare interaction between
electrons, this bosonization scheme allows us to explicitly
calculate the statistical interaction between anyons, and
construct microscopic Hamiltonians for the dynamics of the
anyon fluids. The duality hints that each quantum Hall fluid
can be understood equivalently as particles of different
statistical properties. This may explain various different
effective schemes involving composite fermions or bosons
in the literature as viewing the same physics from different
perspectives [56–60].
The bosonization scheme allows us to identify topologi-

cal FQH phases of interacting bosons with the topological
orders inherent from their fermionic or anyonic counter-
parts. They are different from the two-component or lattice
bosonic FQHE proposed in the literature [61–63], that
require symmetry protection. A family of fermionic parton
states was recently proposed in [14], and it is possible that
their bosonic versions could be related to the topological
phases proposed here [64]. We numerically analyzed the
gapped energy spectrum and the ground state entanglement
spectrum of a bosonic phase at ν ¼ 2 and S ¼ 2, confirm-
ing the validity of the bosonization scheme. Note that one
fractional quantum Hall phase for electrons can be inter-
preted either as a quantum fluid of fermionic holes, or
different types of anyons. Each interpretation leads to a
dual description of bosons with different microscopic
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FIG. 2. (a) The black dots give the energy spectrum with 18
bosons, 11 orbitals, and a truncated Hamiltonian dual to V̂2bdy

1 as
detailed in [36], and the fermionic spectrum of V̂2bdy

1 is shown
here with red crosses as comparison. (b) The ground state
entanglement spectrum, with low-lying states (shown in red)
having the correct Virasoro counting.
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interactions, at different filling factors. It will be interesting
to see if we can experimentally realize such bosonic FQH
phases in, for example, the cold atom systems; or to see
how these bosonic excitations with fractional charges can
be nucleated in the bulk of the fermionic FQH systems.
Fundamentally, the ability to bosonize anyons in two

dimensions is related to the bulk-edge correspondence and
the feasibility of bosonizing the chiral Luttinger liquid of
the edge excitations. For FQH phases with ground states
and quasiholes living in non-Abelian subspaces (e.g.,
H½1

2
;−2� with vacuum jψi½1

2
;−2�, which is the null space of

the Moore-Read model three-body Hamiltonian), we can-
not fully bosonize the quantum Hall fluid, because of the
presence of parafermions [65]. Nevertheless, we can still
understand the ground state and quasiholes of such FQH
phases as quantum fluids of bosons and parafermions, with
explicit statistical interactions between them from a similar
scheme. Further studies of such systems could enhance our
understandings of the statistical nature of anyons and non-
Abelians, and help to construct effective field theory
descriptions of such exotic particles in a systematic manner.
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