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Linking thermodynamic variables like temperature T and the measure of chaos, the Lyapunov exponents
λ, is a question of fundamental importance in many-body systems. By using nonlinear fluid equations in

one and three dimensions, we show that in thermalized flows λ ∝
ffiffiffiffi
T

p
, in agreement with results from

frustrated spin systems. This suggests an underlying universality and provides evidence for recent
conjectures on the thermal scaling of λ. We also reconcile seemingly disparate effects—equilibration on
one hand and pushing systems out of equilibrium on the other—of many-body chaos by relating λ to T
through the dynamical structures of the flow.

DOI: 10.1103/PhysRevLett.127.124501

Many-body chaos is the key mechanism to explain the
fundamental basis—thermalization and equilibration—of
statistical physics. However, there are equally important
examples in nature, such as turbulence, where chaos plays a
role that is seemingly opposite from the settling down
through thermalization and equilibration of several many-
body systems. This contrast becomes stark if we argue in
terms of the celebrated butterfly effect [1–4]: while the
amplification of the wingbeat results in complex dynamical
macroscopic structures in driven-dissipative systems (e.g.,
a turbulent fluid), the same amplification leads to a
loss of memory of initial conditions, resulting in ergodic
behavior and eventual thermalization or equilibration,
in Hamiltonian many-body systems. How then do we
reconcile these two apparently disparate roles of many-
body chaos?
An important piece of the answer lies in investigating the

spatiotemporal aspects (the Lyapunov exponent λ and
butterfly speed vB) of many-body chaos in fluids to reveal
its connection with macroscopic (thermodynamic) charac-
terization of the system. This provides for comparisons of
length scales and timescales of chaos and thermalization,
on the one hand, and the nonlinear dynamic structures of
the fluid-velocity field on the other.
Characterizations of chaos and its connection with

transport and hydrodynamics are recent in the context of
both classical and quantum many-body systems like
unfrustrated and frustrated [5–8] magnets, strongly corre-
lated field theories [9–17], and field theories of black holes
[18,19]. A common feature responsible for the unconven-
tional signatures of chaos in many of these systems seems
to originate from a large set of strongly coupled, dynamic,
low energy modes arising from competing interactions.
This is similar a turbulent fluid where the triadic inter-
actions of velocity (Fourier) modes across several decades

lead to strong couplings resulting in, e.g., scale-by-scale
energy transfers [20,21].
These studies have been facilitated by the development

of quantum out-of-time commutators (OTOCs) [5,16,22–
26] and their classical counterpart the decorrelator [5,6]
which measure how two very nearly identical copies of a
system decorrelate spatiotemporally. The classical decor-
relators are invaluable for understanding the butterfly effect
[1–4] in nonintegrable, chaotic, classical many-body sys-
tems through the measurement of λ and vB. Since by
construction, these OTOCs or decorrelators provide a
unified framework to bridge thermodynamic variables
(e.g., temperature T) with the butterfly effect, they are a
unique prescription to connect many-body chaos with the
foundations of statistical approaches in both classical and
quantum many-body systems. The most striking example
of this is that while for quantum systems, λ ≤ T=ℏ, limiting
the rate of scrambling [23], the analogous conjecture for
classical systems is λ ∝

ffiffiffiffi
T

p
at low temperatures [23,27].

In this Letter, by using a model of thermalized fluids, we
derive λ ∝

ffiffiffiffi
T

p
and demonstrate a possible universality of

many-body chaos without an apparent (weakly interacting)
quasiparticle description, and hence a kinetic theory.
Interestingly, we show how decorrelators sense the emer-
gent dynamical structures of the fluid-velocity field, pro-
viding an elegant way to bridge the ideas of many-body
chaos with foundational principles of statistical physics:
thermalization, equilibration, and ergodicity.
For classical systems, recent understanding of spatio-

temporal chaos through decorrelators stems primarily from
spin systems [6–8]. However, these ideas have not been
applied for the most ubiquitous of chaotic, nonlinear,
systems: turbulent flows. This is because, unlike spin
systems, turbulent flows, governed by the viscous Navier-
Stokes equation, are an example of a driven-dissipative
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system without a Hamiltonian or a statistical physics
description in terms of thermodynamic variables.
Therefore, we look for variations of the Navier-Stokes
equation which, while preserving the same nonlinearity,
nevertheless has a Hamiltonian structure, resulting in a
chaotic, thermalized fluid.
Such a prescription leads to the inviscid, three-dimen-

sional (3D) Euler and one-dimensional (1D) Burgers
equations, but retaining only a finite number of Fourier
modes through a (Fourier) Galerkin truncation [28–31].
Such a projection of the partial differential equations
onto a finite-dimensional subspace ensures conserva-
tion of momentum, energy, and phase space, and gua-
rantees chaotic solutions for the flow field which the-
rmalizes. These thermalized fluids (see Supplemental
Material [32]) are characterized by energy equipartition
and velocity fields with Gibbs distribution P½v�dv ¼
ð3=2πEÞ3=2 exp½−3v2=2E�dv as illustrated in Fig. 1.
Here, E is the conserved energy density of the system
satisfying h1

2
v2i ¼ E. This allows us to define a temper-

ature, T ¼ 2
3
E such that the different thermalized configu-

rations describe a canonical ensemble. A thermalized fluid
is thus not dissimilar to that of correlated many-body
condensed matter systems (e.g., frustrated magnets) where
the microscopic memory does not dictate the dynamical
correlations.
These thermalized fluids set the platform for addressing

the primary question of the growth of perturbations in a
classical, chaotic system. To do this, in the 3D Euler, an
arbitrary realization of the thermalized solution va0 ¼ vth is
taken and a second copy generated, with a perturbation in
velocity field, vb0 ¼ va0 þ δv0. Here, δv0 ¼ ∇ ×A, with
Ai ¼ ϵ

ffiffiffiffi
E

p
r0 exp½−ðr2=2r20Þ�êi, is an infinitesimal (charac-

terized by ϵ ≪ 1) perturbation centered at the origin and
which falls off rapidly with distance r (with the reference
scale r0 ≪ 2π) making it spatially localized.
We now evolve [32] the Galerkin-truncated Euler

equation, independently for the two copies, with initial

conditions va0 and vb0 to obtain (thermalized) solutions
vaðx; tÞ and vbðx; tÞ and thence the difference field
δvðx; tÞ ¼ vbðx; tÞ − vaðx; tÞ. Since initially this difference
field δvðx; 0Þ≡ δv0 was spatially localized and vanish-
ingly small, its subsequent spatiotemporal evolution
reflects how the butterfly effect manifests itself in such
systems. Fundamentally, this is a question of how systems
a and b decorrelate and intimately connected with ques-
tions of ergodicity and thermalization.
To make this assessment rigorous, we construct the

spatially resolved decorrelator ϕðx; tÞ ¼ h1
2
jδvðx; tÞj2i,

where h� � �i denotes averaging over configurations taken
from the thermalized ensemble and distance is measured
from origin where the perturbation is seeded at t ¼ 0. In
Fig. 2 (see movie in Supplemental Material [32] for the full
evolution) we show the spatial profile (in the z ¼ 0 plane)
of jδvðx; tÞj2 for a particular initial realization of systems a
and b at two different instants of time. While at very early
times t ¼ 0þ, panel (a), jδvðx; tÞj2 remains small but
diffuses instantly and arbitrarily, a more striking behavior
is seen at later times [panel (b)] when the spatial spread is
controlled by the strain in the velocity field as we shall see
below. [It is likely that the initial, instantaneous spread is a
result of the nonlocality (in space) of the 3D fluid because
of the pressure term; however, since the Galerkin truncation
also introduces an additional nonlocality, the precise
mechanism for the initial spread is hard to pin down.]
Since the thermalized fluid is statistically isotropic, the

decorrelator ϕðx; tÞ is a function of jxj. We exploit this to
construct the more tractable angular-averaged decorrela-
tor ϕðr; tÞ ¼ ð1=4πr2Þ R dΩrϕðx; tÞ.
Given the nonlocality of the 3D Euler equation, these

systems differ crucially from spin systems in the absence of
pilot waves and a distinct velocity scale akin to a butterfly
speed [5,6]. Instead, decorrelators for 3D thermalized fluids
have a self-similar spatial profile ϕðr; tÞ ∼ r−α (with α ∼ 4).
The lack of a sharp wave front and self-similarity is evident

FIG. 1. Probability distribution functions of the x component of
the thermalized velocity field from Galerkin-truncated 3D Euler
and (inset) 1D Burgers simulations for different energies; dashed
lines denote the corresponding Gibbs distribution.

(a) (b)

FIG. 2. Representative plots of the difference field jδvðx; tÞj2,
along the z ¼ 0 plane of a 3D thermalized fluid (with energy E ¼
2.0 and a perturbation amplitude ϵ ¼ 10−6 at (a) early (t ¼ 0.4)
and (b) later (0.7) times. The inset of panel (a) shows the same early
time data, with amagnified scale, to reveal a somewhat self-similar
spatial structure that arises from nonlocal interactions (see main
text and movie in Supplemental Material [32]).
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from Fig. 2(b) and the inset of Fig. 2(a). Therefore, to track
the temporal evolution of the decorrelator it is conveni-
ent to introduce the space-averaged decorrelator ΦðtÞ ¼
ð1=VÞ R d3xϕðx; tÞ which then serves as a diagnostic for
the temporal aspects of this problem.
This allows us, starting from the 3D Euler equation, to

derive the evolution equation

_ΦðtÞ ¼ −hδviSijδvji ð1Þ

in terms of the familiar rate-of-strain tensor 2Sij ¼∂ivaj þ ∂jvai ; the overbar in the definition denotes a spatial
average.
By using the eigenbasis of S, we rewrite the above

equation as _Φ ¼ −
P

3
i¼1 hα̂2i γijδvj2i where fγig are the

three eigenvalues and fα̂ig are the direction cosines of δv
along the three eigendirections. Equation (1), which for-
mally resembles the enstrophy production term for the
Euler equation [39,40], is an important result that connects
the decorrelator with the dynamical structures of the
velocity field.
Our direct numerical simulations (DNSs) [32] of the

truncated 3D Euler equation show strong evidence that the
difference fields preferentially grow, at short times, along
the compressional eigendirection (i ¼ 3) of the thermalized

fluid leading to a further simplification _Φ ≈ −hα̂23γ3jδvj2i.
Since by definition γ3 < 0, this ensures not only the
positive definiteness of _ΦðtÞ, but also, since (up to con-
stants) _ΦðtÞ ∼ −γ̄3Φ, an exponential growth with a
Lyapunov exponent λ ∼ jγ̄3j at short times (Fig. 5). This
connects the straining of the flow field with λ.
How robust is this short-time behavior with respect to

both dimension and the compressibility of the flow?
The answer lies in an analysis of the 1D (compressible)

Burgers equation with NG Fourier modes. Furthermore, to
underline the universality of our results, this time we
construct the decorrelator and carry out the theoretical
[32] and numerical analysis entirely in Fourier space. As
before, from the thermalized solution (in Fourier space) v̂th,
defining a control field v̂a0 ¼ v̂th and a perturbed field v̂b0 ¼
v̂a0ð1þ ϵδk;kpÞ with large values of the perturbation wave
number kp to generate delocalized small-scale perturba-
tions in the systems [32]. It is important to stress that given
the seed perturbation is localized in Fourier space in 1D
(and hence delocalized in physical space), the spatial
spread of perturbations, which is relevant and studied for
3D fluids in this Letter, remains outside the scope of
analysis here.
As before, both systems are evolved independently and

the Fourier space decorrelator jΔ̂kj2 ¼ hjv̂ak − v̂bk j2i, mea-
sured, mode by mode, as a function of time. Given the
relative analytical simplicity of the 1D system, we construct
the equation of motion of jΔ̂kj2 and derive an exponential

growth of the decorrelator associated with a Lyapunov
exponent λ. Thus, the theoretical calculations for the 1D
model are not only consistent with the more complex 3D
system but also provide, as we see below, a more rigorous
insight into how the Lyapunov exponent scales with T and
the degrees of freedom NG of our system. (See
Supplemental Material [32] for the derivation of the linear
theories describing the short-time dynamics of the
decorrelator.)
At long times, since systems a and b decorrelate

hva · vbi ¼ 0, leading to a suspension of the underlying
approximations in the linear theory presented above, Φ and
jΔ̂kj2 must saturate to a value equal to 2E and 2E=NG,
respectively.
With these theoretical insights for both the 1D and 3D

systems, we test them against results from our numerical
simulations. In Fig. 3 we show representative results for
ϕðr; tÞ (Φ in the upper inset) from 3D Euler and jΔ̂kj2 for
the 1D Burgers (lower inset) versus time on a semilog scale.
The symbols (for different values of r and k) are results
from the full nonlinear DNSs while the dashed lines
correspond to decorrelators obtained from the linearized
theory.
Consistent with our theoretical estimates described

above, the decorrelators from the full, nonlinear DNSs
(shown by symbols) grow exponentially (positive λ) before
eventually saturating (as the two systems decorrelate) to a
value set by the energy. The agreement between these
decorrelators and the ones we estimate theoretically
through a linearized model (dashed lines) is remarkable
during the early time exponential phase. However, decor-
relators constructed from the linearized model (valid for
short times) are insensitive to nonlinearities and continue
growing exponentially, while the ones from the full

FIG. 3. Semilog plots of ϕðr; tÞ (E ¼ 1.0) and (lower inset)
jΔ̂kj2 (E ¼ 2.0) showing an initial exponential growth and
eventual saturation. The dashed lines, from linearized theory,
are in excellent agreement with DNSs at early times. Upper inset:
semilog (left y axis) plot of ΦðtÞ (3D fluid) along with results
from our linearized theory (dashed line). λ, extracted from ΦðtÞ,
shown as dash-dotted horizontal line, agrees well with λS
(linearized theory, right y axis).
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nonlinear system eventually saturate. We will soon return to
the question of timescales which determine this saturation.
Finally, we confirm the validity of Eq. (1) by showing

(upper inset, Fig. 3) the agreement between λSðtÞ ¼
−hδviSijδvji=ΦðtÞ and the Lyapunov exponent λ extracted
from the decorrelator ΦðtÞ measured in DNSs. The agree-
ment between the two is almost perfect at short times before
λSðtÞ decays to zero as the decorrelator saturates.
This inevitably leads us to the central question of this

work: how fast do perturbations grow in a classical, chaotic
system and how does it depend on the temperature T as
well as the number of modes, NG? Furthermore, is the
scaling behavior of λ really universal?
Although nonlinear equations for hydrodynamics do not

yield easily to an analytical treatment, it is tempting to
theoretically estimate the functional dependence of λ on T
and NG. An extensive analysis [32] of the linearized
equations for ΦðtÞ and jΔ̂kj2 show that under very
reasonable approximations, which were tested against data,
λ ∝ NG

ffiffiffiffi
T

p
. Whereas for the Euler fluid this scaling is a

consequence of the statistics of the strain-rate tensor which
determines the behavior of ΦðtÞ, the analogous result for
the 1D system is obtained by straightforward algebraic
manipulations, factoring in the statistical fluctuations, of
the equation governing the evolution of jΔ̂kj2.
Our theoretical prediction is easily tested by measuring λ

in DNSs of the full nonlinear 3D Euler and 1D Burgers
equations. From plots such as in Fig. 3, we extract the mean
λ and its (statistical) error bar, and examine its dependence
on temperature T (and NG) by changing the magnitude of
the initial conditions and hence the initial energy or
temperature. (Surprisingly, λmeasured through such decor-
relators are independent of r or k, as was already suggested
in Fig. 3.) Figure 4 shows a unified (3D Euler and 1D
Burgers) log-log plot of all the rescaled Lyapunov exponent
λ=NG measured—for different strengths and scales of
perturbations and NG—as a function of temperature T.

The collapse of the data on the dashed line, denoting a
ffiffiffiffi
T

p
scaling, shows that the many-body chaos of such thermal-
ized fluids is characterized by the behavior λ ∝ NG

ffiffiffiffi
T

p
. It is

worth stressing that these DNS results for the 3D Euler
equations make the theoretical bound [32] sharp.
These, to the best of our knowledge, are the first results,

and confirmation of earlier conjectures [23,27] and dem-
onstrations for classical spin systems [6], that λ ∝

ffiffiffiffi
T

p
in a

chaotic and nonlinear, many-body classical system obeying
the equations of hydrodynamics. Remarkably, we also find
strong evidence that λ scales linearly with NG in such
extended systems and independent of spatial dimension and
compressibility of the flow.
Given the association of many-body chaos with ergo-

dicity and equilibration in classical statistical physics, how
well do measurements of λ relate to the (inverse) timescales
associatedwith the loss ofmemory? The simplestmeasure of
how fast a system forgets is the ensemble-averaged auto-
correlation function CðtÞ ¼ ð2EÞ−1hvthðtÞ · vthð0Þi (Fig. 5).
It is easy to show [32] that CðtÞ≊ exp ½−ðt2=2τ2Þ� with an
autocorrelation time τ ∼ 1=λ as clearly shown from our
measurements (upper inset, Fig. 5). This association of τ
with λ provides a firm foundation to interpret the salient
features of many-body chaos in terms of principles of
statistical physics: ergodicity and thermalization. A further
connection is established through the relation between the
timescales tsat ∼ τ ∼ 1=λ at which the decorrelator saturates
as ΦðtÞ≊2Eð1þ exp ½−λðt − tsatÞ�Þ−1.
The generality of the OTOCs and cross-correlators lead

to questions of connecting the macroscopic variables with
the scales of chaos in the most canonical of chaotic
systems: those described by nonlinear equations of hydro-
dynamics. Here, we provide the first evidence of the
temperature dependence of the Lyapunov exponent in
(continuum) classical nonlinear hydrodynamic systems
and show its robustness with respect to spatial dimensions
and compressibility effects. It is important to underline that

FIG. 4. Log-log plot of λ=NG versus T for the 3D (axes in red)
and 1D (axes in blue) thermalized fluids corresponding to
different values of ϵ, NG, and, for the 1D fluid, kp. The dashed

line ∝
ffiffiffiffi
T

p
confirms our theoretical prediction.

FIG. 5. A plot of CðtÞ for a (a) nearly and (b) completely
thermalized 3D fluid along with the theoretical Gaussian pre-
diction. Lower inset: a magnified view shows that for a fluid
which is not completely thermalized, CðtÞ falls off to zero much
more slowly. Upper inset: representative plots of τ and the
average (negative) eigenvalue (compressional direction) versus λ.
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many-body chaos and λ ∼ NG

ffiffiffiffi
T

p
is really an emergent

feature of a fluid which is thermalized. We checked this
explicitly by measuring the decorrelators in the flow before
it thermalizes and found, despite the conservation laws still
holding, no associated exponential growth and spread of
the difference field. Furthermore, our measured λ should be
identified with the largest Lyapunov exponent of the system
and that tsat is a useful estimate of thermalization (or
equilibration) time.
Finally, the temperature dependence of λ is consistent

with recent results for classical spin liquids without
quasiparticles [6–8,41] as well as more general dimensional
arguments based on phase-space dynamics [27] of classical
many-body systems. In this regard we note that in classical
spin systems [7], the existence of low energy quasiparticles
seems to reduce the chaotic behavior of the system (λ ∝ Ta,
a > 0.5). While more detailed and theoretical investigation
of these features, as well as, how far they are relevant for
the spontaneously stochastic Navier-Stokes turbulence are
interesting future directions, this butterfly effect for
classical, nonlinear, hydrodynamic systems seems to be
robust and generic.
While it is probably true that the exact nature of the

dependence of the Lyapunov exponent on the temperature
(or energy density) and number of degrees of freedom
should vary from system to system, the evidence we
provide of their interdependence opens new avenues and
questions. In particular, these studies demonstrate the
dependence of signatures of spatiotemporal chaos on
the thermodynamic variables as well its relation with the
transport properties.
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