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Topological photonic insulators have attracted significant attention for their robust transport of light,
impervious to scattering and disorder. This feature is ideally suited for slow light applications, which are
typically limited by disorder-induced attenuation. However, no practical approach to broadband topologically
protected slow light has been demonstrated yet. In this work, we achieve slow light in topologically
unidirectional waveguides based on periodically loading an edge termination with suitably tailored
resonances. The resulting edge state dispersion can wind around the Brillouin zone multiple times sustaining
broadband, topologically robust slow light, opening exciting opportunities in various photonic scenarios.
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The interaction between light and matter can be consid-
erably increased by structuring materials on the scale of the
wavelength. One attractive avenue is to structure materials so
that the group velocity of light is significantly reduced [1,2].
Because of its low velocity, slow light goes hand in hand
with large field intensities and can therefore be used to
enhance light-matter interactions and nonlinear phenomena
[3–8]. In addition, slow light enables the miniaturization of
optical devices, as in the case of optical buffers [9–11].
Impressive results in this context have been achieved in
photonic crystal line-defect waveguides [12,13] and coupled
resonator optical waveguides (CROWs) [14–17]. However,
these slow light devices are ultimately practically limited
by the fact that low group velocities also imply extreme
sensitivity to imperfections, leading to losses induced by
backscattering and localization phenomena [18–21].
The field of topological photonics may provide a

solution to this challenge [22]. Inspired by developments
in solid-state topological insulators, in which the inherent
robustness of the Hall conductance was shown to be related
to a topological invariant, the Chern number, Haldane and
Raghu showed that nontrivial topological bands can also
arise for classical electromagnetic waves in periodic media
with broken time-reversal symmetry [23,24]. The most
striking consequence of this effect is that chiral, unidirec-
tional edge states must arise at the interface between
photonic materials with different Chern numbers [25],
and these edge states are topologically protected against
disorder [26–28]. As a result, it has been speculated that
these unidirectional edge states make photonic topological
insulators an ideal platform to address the current chal-
lenges of slow light devices (see, e.g., Refs. [26,27,29–36]
for a selection). However, despite these suggestions, broad-
band, topologically protected slow light has not yet been
demonstrated.

Several different photonic topological phases have been
unveiled since the seminal work by Raghu and Haldane. In
particular, photonic structures supporting phenomena analo-
gous to the quantum spin Hall effect have been recently
introduced [30,37–39]. Despite being reciprocal, they
exhibit helical edge states topologically protected against
certain types of disorder, enabling more robust slow light
phenomena [30]. However, given that time-reversal sym-
metry in these systems requires the existence of a backward
propagating edge state, for truly random disorder that
couples the helicity of forward and backward waves, these
slow helical edge states are ultimately expected to succumb
as well [40].
Here, we study chiral edge states in systems with broken

time-reversal symmetry. It has recently been proposed,
based on the Haldane model of a honeycomb lattice, that
broadband slow light may possibly be achieved by winding
the edge state dispersion around the Brillouin zone multiple
times [34]. However, the approach taken in Ref. [34] does
not directly translate into a realistic photonic setting. We
explore a practical approach to achieve Brillouin zone
winding, based on periodically loading the edge with
resonators [41]. We show that the approach is versatile,
readily achieves large delays, and is straightforward to
implement in multiple different ways.
Consider a waveguide side coupled to a periodic arrange-

ment of resonators with period Λ. Using coupled-mode
theory, the equation of motion for the nth set of resonances
is [42,43]

d
dt

an ¼ ðiΩ − ΓÞan þKTsðþÞ
n ; ð1Þ

where Ω is a Hermitian matrix containing the center
frequencies and evanescent coupling between on-site
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resonances, Γ is a matrix containing the loss rates and
dissipative coupling rates, andK is the coupling coefficient
between the waveguide and the resonances. The modal
amplitude is normalized so that the stored energy in an;i is
given by jan;ij2. The amplitude of the outgoing waveguide
modes obeys

sð−Þn ¼ CsðþÞ
n þ Dan; ð2Þ

where C is the direct scattering matrix (in the absence
of resonances), and it is determined by the bare wave-
guide propagation constant kw and unit cell length d,
C ¼ e−ikwΛð0

1
1
0
Þ, and D is the coupling matrix between

the resonators and the outgoing waveguide modes. Because
of Bloch’s theorem, neighboring unit cells are related as
anþ1 ¼ e−ikxΛan, where kx is the propagation constant of
the combined system of waveguide and resonances.
Combining Bloch’s theorem with Eqs. (1),(2) and the
coupled-mode theory identities [42,44] enables us to
calculate the dispersion relation [43].
As an instructive example, Fig. 1 shows the dispersion

for waveguides coupled to a single symmetric resonance
per unit cell. If the bare waveguide is reciprocal [Fig. 1(a)],
it supports both a forward and backward mode (shown by

the gray dashed lines). The resonance will couple to both
forward and backward propagating modes, and due to
Bragg diffraction a band gap opens near the resonance
center frequency, at which the resonance reflects most
strongly. The group velocity just outside the band gap is
low, and it vanishes exactly at the band edge. This regime
has been commonly used for slow light applications [2,10],
but they are generally dispersive and narrow band and,
more importantly, they are susceptible to disorder, limiting
the lowest achievable group velocity.
The dispersion becomes markedly different if we con-

sider a nonreciprocal and unidirectional waveguide, such as
the edge state in a photonic topological insulator with
broken time-reversal symmetry. In this case, in order to
calculate the dispersion we need to use nonreciprocal
coupled-mode theory [43]. The bare dispersion for a
waveguide that supports only a forward mode is shown
in Fig. 1(b) by the single gray dashed line. Introducing the
same periodic arrangement of resonances as in Fig. 1(a)
(solid orange line) does not result in a band gap any longer.
Instead, the dispersion wraps around the Brillouin zone
one time, resulting in a reduced group velocity over the
bandwidth of the resonance, as evidenced by the slope of
the dispersion curve. Interestingly, this dispersion is iden-
tical to the forward dispersion of a reciprocal side-coupled
integrated spaced sequenced of ring resonators (SCISSOR)
[45,46]. This is because the (anti-)clockwise modes in a
ring resonator couple only to the forward or backward
modes, due to momentum conservation. However, fabri-
cation imperfections couple the (anti-)clockwise modes and
induce standing modes that decay into both forward and
backward propagating waves, resulting in a situation
similar to Fig. 1(a). Hence, while the ideal dispersion is
identical, unidirectionality is required to enable a robust
practical implementation.
Intuitively, the dispersion in Fig. 1(b) can be understood

by considering that the difference in transmission phase at
frequencies far above and below a resonance is 2π. Adding
a resonance in each unit cell thus implies that there is an
additional 2π phase difference between frequencies above
and below the resonance, which in the periodic arrange-
ment thus implies that the dispersion must traverse an
additional 2π=Λ for each resonance in the unit cell. In the
Brillouin zone, this appears as a single wrapping around the
zone (as the dispersion runs form −π=Λ to π=Λ). In other
words, the number of resonances per unit cell that the
edge termination supports is directly related to the number
of times the dispersion wraps around the Brillouin zone. We
can verify this argument using the framework presented
earlier: Fig. 2(a) schematically shows a unidirectional
waveguide side coupled to a resonator, which in turn
is evanescently coupled to additional resonators. The
dispersion for up to four resonances per unit cell calculated
using Eqs. (1),(2) is shown in Figs. 2(b),2(c). As expected,
the dispersion winds around the Brillouin zone one
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FIG. 1. (a) Dispersion of a bare reciprocal waveguide (gray
dashed lines), and a reciprocal waveguide side-coupled to a
periodic array of resonances (blue, see inset for schematic). Near
the center frequency a band gap opens, and on both sides of the
gap narrowband and dispersive regions supporting slow light
arise. (b) If the bare waveguide instead is nonreciprocal and
unidirectional, so that only a forward mode is supported (gray
dashed line), no band gap opens when the waveguide is coupled
to the same periodic cavity array (see inset). A region of slow
light arises at the resonance center frequency. Dispersion calcu-
lated with Eqs. (1),(2).
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additional time for each additional resonance. Since the
bandwidth remains the same, the increased winding results
in slower group velocities over the entire bandwidth,
enabling broadband slow light [34].
In analyzing the group velocity, we can distinguish

between the contribution of the resonance loading vgr,
and of the bare waveguide vgw: c=vg ¼ c=vgw þ c=vgr,
where c is the speed of light in vacuum. The factor c=vgr
is shown in Fig. 2(d) for the dispersion curves in
Figs. 2(b),2(c). As expected, as more resonances are added
the group velocity further decreases. With four coupled
resonances, for example, c=vgr reaches approximately
35λ0=Λ, where λ0 is the center wavelength and Λ is the
unit cell size, over a bandwidth of approximately ω0=20.
In order to minimize distortion as a slow light pulse travels
along the edge, higher-order derivatives of the group
velocity should ideally vanish within the operating band-
width. In a regular CROW, a flat top dispersion is
challenging to obtain [47]; however, as shown in Fig. 2(d),
side-coupled chains of resonators support flat top
dispersion over a wide bandwidth [43], indicating that this
resonant edge termination is an ideal candidate for topo-
logically robust slow light.
To demonstrate a practical implementation of this con-

cept, we consider a two-dimensional photonic crystal

consisting of a square lattice of yttrium-iron-garnett
(YIG) rods, based on Ref. [26], numerically calculated
using COMSOL Multiphysics. The rods have a radius of
0.11Λ0, where Λ0 is the crystal period. This photonic
crystal supports a quadratic degeneracy at the M point,
between the 2nd and 3rd band, which is lifted when an out-
of-plane magnetic bias is applied. Operating at 4.28 GHz
and neglecting dispersion and losses, the YIG permittivity
is ε ¼ 15ε0 and, with a 0.16 T stationary magnetic bias in
the out-of-plane direction the permeability tensor is [26,48]

μ ¼ μ0

0
B@

14 12.4i 0

−12.4i 14 0

0 0 1

1
CA: ð3Þ

The resulting band diagram projected on the x direction
is shown in Fig. 3(a). The topological invariant of the
nth band can be calculated through its Berry curvature
ΩnðkÞ ¼ iðhδkxEn;kjδkyEn;ki − hδkyEn;kjδkxEn;kiÞ, where
En;k is the corresponding field profile [22]. The Chern
number, shown next to each band in Fig. 3(a), is then given
by the integral of the Berry curvature over the Brillouin
zone, Cn ¼ 1=2π

R
BZ dkΩnðkÞ.

When the photonic topological insulator is interfaced
with a topologically trivial opaque material, such as a

B
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FIG. 2. (a) Schematic of a unidirectional waveguide (due to,
e.g., a static magnetic induction bias B) side coupled to a periodic
array of resonant cavities. (b) Dispersion of the bare waveguide
(gray dashed line), and loaded with one (gray) and two (black)
cavities per unit period. The waveguide is designed to support
slow light in the gray shaded region. (c) Same as in (b), but now
with three (orange) and four (blue) loading cavities. For each
additional resonance, the dispersion wraps around the Brillouin
zone once more. (d) Impact on the group velocity of adding
resonances. The curves are normalized by a factor λ0=Λ: a small
period decreases the net group velocity. All results in this figure
are calculated using the coupled-mode theory framework.
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FIG. 3. (a) Dispersion of the YIG photonic crystal, with Chern
numbers shown on the left. The red lines are topologically
protected nonreciprocal edge states. (b) Schematic of the edge
terminations considered here: configurations containing up to
three rectangular cavities, with supercell denoted by dashed lines.
(c) Dispersion of the edge state with one (gray), two (black),
and three (orange) cavities, showing increasing band folding.
(d) Group velocity of the edge state across the nontrivial band gap
with one (gray), two (black), or three (orange) cavities. The gray
dashed line shows the group velocity of the bare edge
state. All results in this figure are calculated using COMSOL
Multiphysics.
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perfect electric conductor (PEC), a topological phase
transition must occur, which yields unidirectional edge
states crossing the gap. The number and direction of edge
states in a topologically nontrivial band gap is given by the
sum over all band Chern numbers below the gap, stemming
from the bulk-edge correspondence [25]. For our photonic
crystal, this principle predicts one edge state in both the
2nd and 3rd gap, with opposite direction, as confirmed by
the red curves in Fig. 3(a).
We focus on the 2nd gap, with a fractional bandwidth

of 10%. To slow down the edge state we introduce a
rectangular resonator in the PEC wall, interfaced with
the edge state through an aperture [Fig. 3(b)]. Such a
resonator supports a lowest-order resonance at εk20 ¼
ðπ=aÞ2 þ ðπ=bÞ2, where ε is the cavity relative permittivity,
k0 is the free-space wavenumber, a and b are the two
rectangle dimensions. As a proof of principle, we repeat the
resonator every three lattice constants, so that Λ ¼ 3Λ0.
The individual resonator, not yet in a periodic array, has
center frequency ω0 ¼ 0.555 × 2πΛ0=c, designed so that it
lies in the middle of the unidirectional gap. The loss rate
γ ¼ 0.01Λ0=c covers a significant portion of the gap,
thereby enabling broadband slow light. The dispersion
curves for the edge state without (dashed black) and with
(gray) the resonator loading are shown in Fig. 3(c). As
expected, the forward dispersion clearly wraps around the
Brillouin zone, slowing down edge state propagation across
the gap.
To further slow the edge state, we introduce an additional

resonator in the unit cell, coupled to the bottom of the
resonant cavity through an aperture [see Fig. 3(b)]. The
dispersion in the case of a double cavity load is also
shown in Fig. 3(c), and as expected the introduction of an
additional resonance causes the dispersion to wrap around
the Brillouin zone one additional time. Introducing a third
resonator, coupled to the second resonator via a similar
aperture, also shown in Fig. 3(b), causes the dispersion to
wrap around the Brillouin zone once more.
The group velocity of these different resonant termina-

tions is calculated in Fig. 3(d). In agreement with Fig. 2(d),
the bandwidth remains more or less identical, while the
group velocity is significantly reduced as each resonator is
added. If we define the slow light bandwidth as the
frequency range with less than 10% variation in group
index, the system with three resonators per unit cell obtains
an average group index ng ¼ 55 over a fractional bandwidth
of 1.9%. This yields a group index-bandwidth product
(GBP) of 1.05 [47], which is considerable relative to existing
slow light designs. Caution must be taken in directly
comparing this GBP to slow light waveguides in silicon
slab photonic crystals, however: the use of PECs and the 2D
nature of the considered geometry here are beneficial.
Having presented a practical approach to topologically

protected slow light, in Fig. 4 we explore the additional
benefit of these unidirectional slow light edge states: their

expected robustness against disorder. Using the coupled-
mode theory framework, we compare the propagation of a
pulse with a 1=e2 width of 40=f0 along the edge with three
cavities per unit cell, as considered in Fig. 2. First, the
system is perfectly periodic [Fig. 4(a)], and the pulse
propagates as expected, with little distortion due to the
low group velocity dispersion. In Fig. 4(b), disorder is
included: all system parameters have a Gaussian spread
with relative standard deviation of 1%. This means that, for
example, each of the cavities has a center frequency that
lies within ω0 � ω0=100, where ω0 is the ideal center
frequency of that cavity and ω0=100 is the standard
deviation of the distribution. Despite the disorder and
low group velocity, the pulse largely maintains its shape
over 100 unit cells. In contrast, in Fig. 4(c) we consider an
equivalent reciprocal system, consisting of the aforemen-
tioned SCISSOR, with three ring resonators per unit cell.
In the ideal scenario, the dispersion is identical to the
unidirectional system; however, with disorder reflections
arise and the pulse quickly disperses. Figure 4(d) shows the
pulse shape at the end of the waveguide for each scenario,
clearly highlighting the important advantages of topologi-
cal slow light.
So far, we have focused on an implementation based on

PEC cavities. The implementation of a resonant edge
termination, however, is not limited to this approach, nor
do the resonators need to be placed in the same location.
The main requirement is that the configuration of reso-
nators physically fits within a small enough propagation
length to induce significant delay, which is why we
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FIG. 4. (a) Propagation of a Gaussian pulse through a nonre-
ciprocal unidirectional waveguide side coupled to three cavities
per unit cell. In the ideal case, there is no difference between the
reciprocal and nonreciprocal systems. (b) Propagation of the
same pulse through the unidirectional system with a 1% relative
standard deviation in each parameter. (c) The same as (b), but
now in a reciprocal system. The clockwise and anticlockwise
modes are assumed to be coupled by 1=25th of the largest
intercavity coupling rate [43]. (d) The output pulses for the three
scenarios shown. While there is some distortion in the unidirec-
tional system with disorder, as expected, it vastly outperforms the
reciprocal system. All results in this figure are calculated based
on the coupled-mode theory framework.
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consider placing resonators along the transverse direction.
An alternative approach, which may be more appropriate in
systems where the topological insulator is interfaced with,
e.g., a trivial photonic crystal instead of a low-loss metal, is
to use photonic crystal cavities as loads. One may also
directly add obstructions in the path of the edge state that
can couple evanescently and form nonreciprocal Fabry-
Perot resonances, as shown in Ref. [35]. We consider both
of these approaches in Ref. [43].
Finally, we comment on the applicability of this

approach to helical edge states in topological insulators
that preserve time-reversal symmetry, analogous to the
quantum spin Hall effect [38] or valley Hall effect [49–51].
As these systems are reciprocal, the edge states are
bidirectional and therefore robust only against certain types
of defects that do not couple opposite helicities. Even more
importantly, the forward and backward propagating edge
states are not orthogonal, resulting in a small gap arising
when they cross [52]. As a result, winding the edge state
around the Brillouin zone results in multiple small gaps
opening and cannot lead to a continuous band of slow light
with minimal group velocity dispersion as the one shown
here. Implementing slow light based on Brillouin zone
winding thus appears to require broken time-reversal
symmetry, which at telecom frequencies can, e.g., be
achieved using uniform temporal modulation [36].
To conclude, we have introduced an approach to create

topologically protected slow light edge states, and analyzed
its benefits for photonic applications. While topological
protection has often been suggested as a means to protect
slow light against disorder, an approach that can yield
broadband protected slow light was still lacking. The
proposed approach relies on loading the edge termination
with an arrangement of resonators. Although many
arrangements are possible, we have presented an approach
based on a transverse array of loading resonators side-
coupled to the topological edge state. For each added
resonator, the dispersion winds an additional time around
the Brillouin zone, increasing the slowdown factor.
Additionally, we have demonstrated that in these unidirec-
tional systems the impact of disorder is limited, making this
approach to slow light very promising for various practical
implementations and scenarios.
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Note added.—During completion of this work we
became aware of another work demonstrating topologically
protected slow light through periodically loaded
resonators [53].
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