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We discuss the general method for obtaining full positivity bounds on multifield effective field theories
(EFTs). While the leading order forward positivity bounds are commonly derived from the elastic
scattering of two (superposed) external states, we show that, for a generic EFT containing three or more
low-energy modes, this approach only gives incomplete bounds. We then identify the allowed parameter
space as the dual to a spectrahedron, constructed from crossing symmetries of the amplitude, and show that
finding the optimal bounds for a given number of modes is equivalent to a geometric problem: finding the
extremal rays of a spectrahedron. We show how this is done analytically for simple cases and numerically
formulated as semidefinite programming (SDP) problems for more complicated cases. We demonstrate this
approach with a number of well-motivated examples in particle physics and cosmology, including EFTs of
scalars, vectors, fermions, and gravitons. In all these cases, we find that the SDP approach leads to results
that either improve the previous ones or are completely new. We also find that the SDP approach is
numerically much more efficient.
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Introduction.—Positivity bounds are constraints on the
Wilson coefficients of an effective field theory (EFT) that can
be bootstrapped from fundamental properties of the Smatrix
of the UV theory [1–3]. Recently, there has been a lot of
interest in extending the strength and scope of the positivity
bounds [4–19], as well as applying the bounds to constrain
EFTs invarious contexts (see, for example, [20–50]). Inmany
situations, and particularly for constraining the parameter
space of the standard model effective field theory (SMEFT)
[4,20–22,29,35,43], the leading positivity bounds for the s2

terms (s, t being the standard Mandelstam variables) in the
amplitude are phenomenologically the most relevant ones.
The most widely used positivity bounds so far are based on
the forward (t ¼ 0) elastic scattering of two factorized states,
each of which can be an arbitrary mixture of various particle
modes. However, it has been shown that this approach does
not always give the best bounds [4]. In addition, obtaining the
complete set of superposed elastic bounds is known to be
nondeterministic-polynomial hard (NP hard) [30].
In this Letter, we will establish a geometric method for

obtaining the full set of leading forward positivity bounds

for EFTs with multiple low-energy modes. It applies not
only to the SMEFT, but also to all other EFTs that involve
multiple particles or multiplet particles. We will compare
with the previous results and show how the new, nonelastic
bounds arise from scattering entangled states.
Notations.—We will use capital calligraphy letters to

denote rank-4 tensors (e.g., T ∈ Rn4). The inner product of
tensors is defined by T 1 · T 2 ≡P

ijkl T
ijkl
1 T ijkl

2 . We say
that T is positive semidefinite (PSD) if T ijkl is a PSD
matrix when ij is viewed as one index and kl another,
which is denoted by T ≽ 0. The null space of this matrix is
denoted as null(T ). Sn×nþ is the set of n × n PSD matrices.

We denote by S⃗n4 the set of rank-4n-dimensional tensors T
that satisfy the following crossing symmetries:

T ijkl ¼ T ilkj ¼ T kjil ¼ T jilk: ð1Þ

T iðjjkjlÞ ≡ T ijkl þ T ilkj. The set of extremal rays (ERs) of
some convex cone X is denoted as ext(X). An ER is an
element of X that cannot be split into two linearly
independent elements inside X.
We shall consider the t → 0 limit of a two-to-two

amplitude, Mij→klðsÞ ¼ Mij→klðs; t ¼ 0Þ, which is only a
function of s, and we define the M tensor

Mijkl ≡ lim
s→0

d2

ds2
Mij→klðsÞ: ð2Þ
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Here i, j, k, and l are indices for the low-energy degrees of
freedom, enumerating particle species, polarization, and
other quantum numbers. We will simply call thisM tensor
“amplitude.”
Dispersion relation.—Axiomatic principles of the UV

amplitude, such as analyticity, unitarity, and crossing
symmetry, lead to a dispersion relation that expresses
Mijkl in terms of an integral of the discontinuity of the
amplitude along the positive real s axis (see, e.g., [4])

Mijkl ¼
Z

∞

ðϵΛÞ2
dμDiscMij→klðμÞ

2iπμ3
þ ðj ↔ lÞ þ c:c:; ð3Þ

where (j ↔ l) denotes the previous term with j and l
swapped. This assumes that a self-conjugate particle basis
is chosen, which is always possible by replacing jii and jīi
by ðjii þ jīiÞ=2 and ðjii − jīiÞ=ð2iÞ. ϵΛ is the subtraction
scale for improved positivity, below which the EFT is valid:
we have slightly changed the definition of Mijkl by
subtracting the dispersive integral below ϵΛ, see more
explanations in Ref. [4]. Upon using the generalized optical
theorem, this relation implies that Mijkl is a convex cone
generated from positive linear combinations of elements of
the form mijmkl þmilmkj [4], i.e.,

Cn4 ¼ coneðfmiðjmjkjlÞ; m ∈ Rn2gÞ: ð4Þ

The elements of Cn4 are invariant under (j ↔ l) and
(i ↔ k) exchanges. We will also assume that mij is either
symmetric or antisymmetric, which is simply Bose sym-
metry for scalars, but implies parity conservation for

vectors. This is equivalent to further requiring Cn4 ⊂ S⃗n4 .
Positivity bounds arise as the boundary of Cn4 . All

components of M can be computed in terms of Wilson
coefficients, so bounds onM can be converted to bounds on
these coefficients. Conventionally, these bounds are derived
by the elastic scattering of a pair of factorized but arbitrarily
superposed states, jui ¼ P

i uijii and jvi ¼ P
i vijii:

uivjukvlMijkl ≥ 0, thanks to uivjukvlmiðjmjkjlÞ ¼
2ðuimijvjÞ2 ≥ 0. They constrain the signs of the elastic
components inMijkl and also set upper and lower bounds on
inelastic scattering amplitudes [21,22,29,43,44]. We will,
however, show that these bounds are nonoptimal.
The goal of this Letter is to understand the exact

boundary of Cn4 , which is, in general, beyond superposed
elastic bounds. In the presence of sufficient symmetries in
the theory, an efficient way to do this is through the
extremal positivity approach presented in Ref. [4], which
determines the ERs ofCn4 using the symmetries of the EFT
and constructs Cn4 from the ERs (see [51] for similar
ideas). However, if operators that involve states not con-
nected by any symmetries are considered, or if the theory
possesses no symmetry at all, the number of ERs can
become infinite, and this approach may not apply [22].

In this Letter, we propose a more general approach that
does not rely on the symmetries of the theory and is thus
immediately applicable to all multifield EFTs.
General bounds from spectrahedron.—Let us briefly

outline this general approach. First, notice that, because
cone Cn4 is convex, the dual cone of Cn4 , defined as

Cn4� ¼ fQjQ ·M ≥ 0; ∀ M ∈ Cn4g;

is also convex and all bounds Q ·M ≥ 0 for all Q ∈ Cn4�

exactly describe the original cone Cn4 . That is, the dual of
dual cone Cn4� equals the original cone Cn4 . Therefore,
instead of finding the Cn4 cone of amplitudes M, we can
equivalently work with the dual cone Cn4�. To determine
salient coneCn4�, we can simply find all its ERs, as positive
linear combinations of these ERs generate the whole
Cn4� [52].
More precisely, since Cn4 is contained in the S⃗n4 sub-

space, it is convenient to define the duality within S⃗n4 ,

Qn4 ≡Cn4� ¼ fQ ∈ S⃗n4 jQ ·M ≥ 0; ∀ M ∈ Cn4g:

We now need to find Qn4 . For any Q∈Qn4, Q ·M ≥ 0 ⇔
QijklmiðjmjkjlÞ ≥ 0 ⇔ 2Qijklmijmkl ≥ 0 for any m (thanks

to Q ∈ S⃗n4), which is equivalent to Q ≽ 0. Therefore, we

have Qn4 ¼ Sn2×n2þ ∩ S⃗n4 which is known as a spectrahe-
dron. Geometrically, a spectrahedron is the intersection of
the cone of PSD matrices (Sn2×n2þ ) with an affine-linear

space (in our case, S⃗n4) and is a well-studied geometric
object, intimately linked to semidefinite programming
(SDP)—the latter is simply an optimization on a spectra-
hedron [53]. The complete and independent positivity
bounds are simply Q ·M ≥ 0 for all Q ∈ extðQn4Þ.
We have essentially converted the problem of finding

positivity bounds to a geometric problem: finding the ERs
of a spectrahedron. Note that these ERs are in the dual
space Qn4 and are to be distinguished from the ERs of the
physical amplitude space Cn4 . The latter have been used in
Ref. [4] to directly construct the boundary of Cn4 . As we
have mentioned, this procedure becomes cumbersome to
use for theories with large n but insufficient symmetries to
determine the ERs. On the contrary, we will see that
the new approach presented here does not have this
limitation.
How do we search for the ERs in Qn4? Just like a

polyhedron, a spectrahedron has many (flat) faces of differ-
ent dimensions. It has been shown in Ref. [55] that, for any
pointQ in a spectrahedron, there exists a unique face FðQÞ
that contains Q with the lowest possible dimension and
where nullðQÞ is constant [independent of where Q is on
face FðQÞ]. This provides a characterization of the faces
and, in particular, the ERs (which are one-dimensional
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faces) of a spectrahedron. Let u1; u2;…; uk be a basis of

nullðQÞ and Q1;Q2;…;Qm be a basis of S⃗n4 , then the null
space of the following ðn2kÞ ×m matrix

B ¼

2
664
Q1u1 � � � Qmu1

..

. . .
. ..

.

Q1uk � � � Qmuk

3
775 ð5Þ

gives the linear subspace that contains FðQÞ. If nullðBÞ is
one-dimensional, thenQ is an ER. The positivity bounds are
simply Q ·M ≥ 0 for all such Q’s.
Toy model: Multiscalar.—Consider an EFT of n scalar

modes ϕi¼1;…;n. At the tree level, the relevant operators are
dim-8, and a basis can be chosen as Oijkl ¼
∂μϕi∂μϕj∂νϕk∂νϕl, which has symmetry Oijkl ¼ Ojikl ¼
Oijlk ¼ Oklij. Let us consider simply a Z2 symmetric model
(ϕi → −ϕi). The amplitude can be computed straightfor-
wardly. We find Miiii ¼ 4Ciiii, Miijj ¼ Mijji ¼ Mjiij ¼
Mjjii ¼ C0

iijj ≡ Ciijj þ 1
2
Cijij, and Mijij ¼ Mjiji ¼ Cijij.

All other elements vanish.
The same Z2 symmetry can be applied to its dual space,

the spectrahedronQn4 . For n ¼ 2, a general element inQn4

can be parametrized as

Q¼

2
664
x1 x2
x2 x3

x4 x2
x2 x4

3
775; x1;3≥ 0; x1x3≥ x22; x4≥ jx2j;

where the rows (columns) correspond to the i, j (k, l) pairs
taking (1,1),(2,2),(1,2),(2,1). The 2 × 2 block-diagonal
structure is due to the Z2 symmetry. Crossing symmetry
is reflected the common matrix elements, while Q ≽ 0
leads to the inequalities. Writing Q≡ xiQi, each Q can be
represented by a x⃗ ¼ ðx1;…; x4Þ. From these inequalities,
we can find the ERs: x⃗e1ðrÞ ¼ ð1; r; r2; jrjÞ and x⃗e2 ¼
ð0; 0; 0; 1Þ, where r is an arbitrary real number, and x⃗e1ðrÞ
is extremal for any r. They are complete because any
other x⃗ can be written as x⃗ ¼ ðx22=x3Þx⃗e1ðx3=x2Þ þ
½x1 − ðx22=x3Þ�x⃗e1ð0Þ þ ðx4 − jx2jÞx⃗e2, which is a positively
weighted sum.
Each ER corresponds to an independent positivity

bound. The second ER, xe2;iQi ·M ≥ 0, simply gives
C0
1212 ≥ 0. The r-dependent ER x⃗e1ðrÞ gives 4C2222r2 þ

4C0
1122rþ 2C1212jrj þ 4C1111 ≥ 0. Together, they are

equivalent to

C1111 ≥ 0; C2222 ≥ 0; C1212 ≥ 0; ð6Þ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1111C2222

p
≥ �ð2C1122 þ C1212Þ − C1212: ð7Þ

As a quick application of this result, it improves the
previous positivity bounds on the parameters of the
Higgs-Dilaton inflationary model [50].
To illustrate the relation between C24 and its dual, in

Fig. 1 we display the 3D cross sections of the physical
amplitudes C24 and the spectrahedron Q24 , which are both
4D cones. The two types of ERs of Q24 are highlighted by
the red and green extreme points, respectively. The boun-
dary of the C24 are dual to these ERs: a vertex in Q24

corresponds to a facet in C24 and vice versa, as implied by
duality. Finding the full bounds is therefore equivalent to
finding extðQ24Þ. On the other hand, the ERs of the
physical amplitudes C24 are also highlighted. They can
be of special physical interest, and we refer to Ref. [23] for
potentially interesting phenomenological consequences.
(More general cases with more modes and without Z2

symmetry are presented in the Supplemental Material [56].)
Our approach always gives the complete bounds avail-

able from the dispersion relation. In contrast, the conven-
tional positivity approach based on elastic scattering can be
incomplete for a model with multiple modes. The elastic
bounds are complete if and only if all elements of extðQn4Þ
can be written in form ofQijkl

uv ≡ uivjukvl þ viujvkul. This
can always be done for biscalar models, even without the
Z2 symmetry (see Supplemental Material [56]). However,
this ceases to be true when there are three or more scalars.
To see this, it suffices to give an example of Q being
extremal in Q34 but not of the form of Quv. One explicit
example is Qex ¼

P
4
α¼1U

ij
αUkl

α , with the following four
Uα matrices:

2
64
1 0 0

0 0 0

0 0 1

3
75;

2
64
0 0 1

0 1 0

1 0 1

3
75;

2
64
0 1 1

1 0 1

1 1 1

3
75;

2
64

0 1 1

−1 0 0

−1 0 0

3
75: ð8Þ

Qex is a rank-4 matrix, so it cannot be written as someQuv,
which is at most rank-2 by definition. We will explain the

FIG. 1. Three-dimensional slice of C24 (left) andQ24 (right) for
the biscalar toy example with Z2 symmetry. The three axes in the
left plot are taken to be ðx; y; zÞ ¼ ð2 ffiffiffi

6
p ðC1111 − C2222Þ;ffiffiffi

2
p ð2C1111 − C1212 þ 2C2222Þ;

ffiffiffi
3

p
C0
1122Þ, normalized to 4C1111þ

C1212 þ 4C2222 ¼ 1. Those in the right plot are the same but

with Cð0Þ
ijkl → Qijkl.
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physics interpretation of Qex later, using the standard
model (SM) flavor operators as an example.
We see that in the most general case, elastic positivity is

incomplete for EFTs with more than two low-energy
modes. In practice, however, the existence of symmetry
relations can delay the appearance of nonelastic bounds.
For example, the 4-W operators presented in Ref. [4]
contain nonelastic bounds. The W boson carries two
helicities and is charged under the adjoint of SU(2), which
is equivalent to the fundamental of SO(3), thus the number
of independent components in this case is six. However, if
reducing the SO(3) to SO(2), which leads to four inde-
pendent components left, there is no nonelastic bound
any more.
General numerical method.—For a model with many

low-energy modes, the optimal positivity bounds can be
efficiently obtained numerically. To see this, note that M
being in Cn4 is equivalent to Q ·M ≥ 0 for all Q ∈ Qn4 .
This means we can get the optimal bounds by requiring the
following semidefinite program:

min Q ·M

subject to Q ∈ Qn4 ð9Þ

has a non-negative minimum. This solves the problem in
polynomial time complexity and always gives the best
bounds within given numerical accuracy, in contrast to the
elastic positivity approach, which is NP-hard and leads to
incomplete bounds.
It is sometimes useful to explicitly describe the boundary

of Cn4 . To this end, a Monte Carlo (MC) approach can be
adopted in order to obtain a random sampling of linear
bounds. To find an ER, one simply (1) picks a random point
Q in Qn4 and computes FðQÞ using Eq. (5).
(2) If FðQÞ is one-dimensional, then Q is on an ER;

otherwise, take a random straight line in FðQÞ and find its
intersection(s) with the boundary of Qn4 (which is a SDP
problem).
(3) Let Q be one of the intersection points and iterate,

until an ER is found.
The iteration will takeQ to a random ER. If the problem

only has a finite number of bounds, this iteration will
capture all bounds. This is often the case if one considers
the self-interactions of some multiplet particle (see exam-
ples in Refs. [4,44]). For nonpolyhedral cones, we will get a
sampling of bounds with a finite number of iterations.
Our new approach, in principle, captures all the infor-

mation from the forward and twice-subtracted dispersion
relation and improves many previous results based on
elastic scattering. We now demonstrate this in subspaces
of SMEFT.
SM gauge bosons.—In the SMEFT, positivity bounds at

dim-8 on gauge-boson operators are partially known
[4,20–22,29,44]. To test our new approach, we consider

parity-conserving four-gluon SMEFT operators. There are
six relevant dim-8 operators (defined in Ref. [61]; see also
Supplemental Material [56]), schematically of the formG4.
The dim-6 operator OG ¼ fABCGAν

μ GAρ
ν GAμ

ρ can also con-
tribute through diagrams with two insertions. The ampli-
tude M can then be mapped to

c⃗≡ ½Cð1Þ
G4 Cð2Þ

G4 Cð3Þ
G4 Cð4Þ

G4 Cð7Þ
G4 Cð8Þ

G4 c2G �; ð10Þ

where CðiÞ
G4 is the coefficient of QðiÞ

G4 defined in Ref. [61],
and cG is the coefficient of OG.
Using the MC approach, we find 45 linear inequalities,

which we have also verified with the symmetric extremal
approach [4]. They can be written in the form of x⃗ · c⃗ ≥ 0,
and the first six x⃗ vectors are

½0; 0; 0; 1; 0; 0; 0� ½0; 0; 1; 1; 1; 0; 0� ½2; 0; 1; 0; 0; 0; 0�
½0; 2; 0; 1; 0; 0; 0� ½0; 0; 3; 0; 2; 0; 0� ½0; 0; 0; 3; 0; 2; 0�

and the other 39 are given in the Supplemental Material
[56]. Previous results on parity-conserving operators based
on selected elastic scattering in Ref. [29] can be reproduced
already by the third to the sixth x⃗ vectors. We emphasize
that this is a new result and an important step toward the full
set of SMEFT positivity bounds.
The new approach is most powerful when multiple

gauge-boson fields are incorporated, where the positivity
cone is no longer polyhedral. A phenomenologically
relevant case is the operators that characterize the anoma-
lous quartic-gauge-boson couplings (aQGCs), which is an
essential part of the electroweak program at the LHC (see
Refs. [62–64] for recent results). Knowing positivity
bounds for these operators will provide guidance for future
experimental searches. For operators sourcing only the
transversal modes, using the SDP approach, we find that
the coefficient space is cut down to 0.681% of the total.
This agrees with Ref. [22], where the same number is
obtained by approximating the amplitude space by a
polyhedral cone with a large number [N ≈Oð103Þ� of
edges and extrapolating N → ∞, which is much less
efficient. The full set of aQGC bounds can also be
determined by the SDP approach. We will present it in a
future work.
SM flavor sector.—A perhaps more relevant example is

the SMEFToperators in the flavor sector. The SM fermions
come with three generations, so full positivity bounds
cannot be derived from elastic scattering of mixed flavors;
flavor symmetry needs not be a symmetry of the SMEFT,
so the symmetric extremal approach [4] does not apply. The
SDP approach solves this problem. Consider one fermion
species f, say the right-handed electron f ¼ eR, but for
all three generations. Using the Fierz identity, the dim-8
four-fermion operators can always be written as Oijkl ¼
∂μðf̄iγνfjÞ∂μðf̄kγνflÞ, where i, j, k, and l are flavor
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indices. SinceOijkl ¼ Oklij, we only count the independent
ones. The crossing symmetric amplitude M depends on
21 independent Wilson coefficients (see Supplemental
Material [56]).
To illustrate the improvement of the new approach, we

pick a set of coefficients C⃗0 that saturates the nonelastic
boundQex given in Eq. (8) and display both elastic and the
exact bounds in Fig. 2. These bounds are obtained by
varying one operator at a time, while keeping the others
fixed at C⃗0, whose values are indicated with red dots.
Elastic amplitudes are only bounded from below, while
others are bounded from both sides. Since C⃗0 is chosen to
saturate the Qex bound, the exact bounds could often
uniquely fix the coefficients, so some exact bounds are
not visible in the plot.
The new bound from Qex can be interpreted as coming

from combining four channels between initial and final
states jIαi ¼ jFαi ¼ Uij

α jii ⊗ jji, for α ¼ 1, 2, 3, 4. The U
matrices are given in Eq. (8) and are at least rank 2, implying
the two incoming particles are entangled. TheU1 matrix, for
example, describes the scattering of the entangled state
jI1i ¼ jF1i ¼ jei ⊗ jei þ jτi ⊗ jτi. Individually, these
states cannot be used to construct positivity bounds, because
the u-channel contribution in the dispersion relation
Uij

αUkl
α milmkj is not positive semidefinite. However, the

Qex tensor combines these channels together such thatP
4
α¼1U

ij
αUkl

α ∈ S⃗n4 is crossing symmetric, which guaran-
tees that both s and u channels are positive.
Positivity bounds for the flavor operators of the SMEFT

are phenomenologically relevant, as the existence of flavor-
violating effects (e.g., μ → 3e) would set lower bounds on
the flavor-conserving ones (e.g., eþe− → eþe−), providing
important guidance for future experiments [43]. While dim-
6 contributions potentially give the dominant contribution,
future precision measurements are likely to have sufficient
precision to simultaneously determine both dim-6 and dim-
8 effects through global fits [23]. Novel observables have
also been designed to extract dim-8 information without
being affected by the dim-6 ones [65]. Phenomenological
studies for dim-8 SMEFT have started in the recent

years [23,33,35,47,65–71], and their interplay with pos-
itivity bounds may reveal crucial information about UV
physics. Our new approach guarantees the best positivity
bounds at dim-8 and is thus crucial for fully capturing this
information.
Summary.—We have shown that the full s2 positivity

bounds for EFTs with n low-energy modes are given by the
ERs of the spectrahedron Qn4 . We have formulated the
problem of finding the optimal bounds as a semidefinite
program, which can be efficiently solved in polynomial
times. We have presented realistic examples and improved
previous results in the areas of cosmology, LHC, and flavor
physics (see the Supplemental Material [56] for more
details, with Refs. [57–60] included there), which are all
useful physical results by themselves. Our approach is
straightforwardly applicable to all multifield EFTs and
represents a crucial step toward fully extracting the pos-
itivity constraints for realistic EFTs with many degrees of
freedom.
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