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Universality is a pillar of modern critical phenomena. The standard scenario is that the two-point
correlation algebraically decreases with the distance r as gðrÞ ∼ r2−d−η, with d the spatial dimension and η
the anomalous dimension. Very recently, a logarithmic universality was proposed to describe the
extraordinary surface transition of the OðNÞ system. In this logarithmic universality, gðrÞ decays in a
power of logarithmic distance as gðrÞ ∼ ðln rÞ−η̂, dramatically different from the standard scenario. We
explore the three-dimensional XY model by Monte Carlo simulations, and provide strong evidence for the
emergence of logarithmic universality. Moreover, we propose that the finite-size scaling of gðr; LÞ has a
two-distance behavior: simultaneously containing a large-distance plateau whose height decays logarithmi-
cally with L as gðLÞ ∼ ðlnLÞ−η̂0 as well as the r-dependent term gðrÞ ∼ ðln rÞ−η̂, with η̂0 ≈ η̂ − 1. The critical
exponent η̂0, characterizing the height of the plateau, obeys the scaling relation η̂0 ¼ ðN − 1Þ=ð2παÞ with
the RG parameter α of helicity modulus. Our picture can also explain the recent numerical results of a
Heisenberg system. The advances on logarithmic universality significantly expand our understanding of
critical universality.
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Introduction.—Continuous phase transitions are ubiqui-
tous, from the magnetic and superconducting transitions in
real materials to the cooling of the early universe. Near a
second-order transition, a diverging correlation length
emerges, and several macroscopic properties become in-
dependent of microscopic details of the system [1–3].
Systems can be classified into few universality classes,
depending on a small number of global features like
symmetry, dimensionality and the range of interactions.
Typically, physical quantities exhibit power-law behaviors
governed by critical exponents characteristic of a univer-
sality class. In particular, at criticality, the two-point
correlation function gðrÞ decays algebraically with the
spatial distance r as

gðrÞ ∼ r2−d−η; ð1Þ

where d is the spatial dimension and η is the anomalous
dimension. Power-law universality has been extensively
verified and recognized as the standard scenario of critical
phenomena [2–5]. Very recently, a novel logarithmic
universality of criticality, drastically different from that
encoded in Eq. (1), was proposed in the context of surface
critical behavior (SCB) [6].
SCB refers to the critical phenomenon occurring on the

boundary of a critical bulk [6–19]. Recent activities on SCB

were partly triggered by the exotic surface effects of
symmetry protected topological phases [20,21]. The
OðNÞ model exhibits rich SCBs including the special,
ordinary, and extraordinary transitions, depending on N
and d [6–19]. The situations at d ¼ 3 are extremely subtle
and controversial [6,12,13,18,19]. Logarithmic universality
of extraordinary transition was proposed for the three-
dimensional OðNÞ model with 2 ≤ N < Nc by means of
the renormalization group (RG) [6], whereas Nc is not
exactly known. It was predicted that the two-point corre-
lation on the surface decays logarithmically with r as [6]

gðrÞ ∼ ½lnðr=r0Þ�−η̂; ð2Þ

where r0 is a nonuniversal constant. If N is specified, the
critical exponent η̂ is universal in the extraordinary regime.
The asymptotic form (2) obviously differs from the
standard scenario (1). A quantum Monte Carlo study
was performed for the SCB of a (2þ 1)-dimensional
O(3) system [18]. However, both the logarithmic and the
extraordinary-power behavior [6] were not completely
confirmed. By contrast, compelling evidence for the
logarithmic behavior was obtained from a classical O(3)
ϕ4 model [19].
In this work, we explore the extraordinary transition with

N ¼ 2, which is the lower-marginal candidate for the
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logarithmic universality. We consider an extensive domain
of extraordinary critical line, in which the universality of
logarithmic behavior is confirmed. Moreover, we give a
two-distance scenario for the finite-size scaling (FSS) of
gðrÞ, where an r-independent plateau emerges at large
distance. The height of the plateau exhibits a logarithmic
FSS with the exponent η̂0, which relates to the exponent η̂ of
r-dependent behavior by η̂0 ≈ η̂ − 1.
Main results.—We study the XY model on simple-cubic

lattices with the Hamiltonian [9,12]

H=ðkBTÞ ¼ −
X

hrr0i
Krr0 S⃗r · S⃗r0 ; ð3Þ

where S⃗r represents the XY spin on site r and Krr0 denotes
the strength of the nearest-neighbor ferromagnetic cou-
pling. We impose open boundary conditions in one
direction and periodic boundary conditions in other direc-
tions, hence a pair of open surfaces are specified. We set
Krr0 ¼ K0 if r and r0 are on the same surface and Krr0 ¼ K
otherwise. The surface coupling enhancement κ is defined
by κ ¼ ðK0 − KÞ=K.
Figure 1 shows the phase diagram of model (3), which

contains a long-range-ordered surface phase in the presence
of ordered bulk, as well as disordered and critical quasi-
long-range-ordered surface phases in the presence of
disordered bulk. The critical lines meet together at the
special transition point. A characteristic feature for N ¼ 2
is the existence of the quasi-long-range-ordered phase,
which is absent in N ¼ 1 and N ≥ 3 situations.
Consider the quasi-long-range-ordered regime. As the

bulk critical point Kc is approached, namely, K → K−
c ,

divergent bulk correlations emerge. A possible scenario is
that the surface long-range order develops at Kc as a result

of the effective interactions mediated by long-range bulk
correlations. This scenario cannot be precluded by the
Mermin-Wagner theorem as the effective interactions could
be long ranged. A previous study revealed [12] that the
Monte Carlo data restricting to L ≤ 95 (L is linear size) are
not sufficient to preclude either discontinuous or continu-
ous surface transition across the extraordinary critical line;
the former implies long-range surface order at Kc.
By Monte Carlo sampling of the surface two-point

correlation function gðrÞ ¼ hS⃗0 · S⃗ri, we confirm the emer-
gence of logarithmic universality in model (3). As shown in
Fig. 2(a), the L dependence of gðL=2Þ obeys the scaling
formula gðL=2Þ ∼ ½lnðL=l0Þ�−η̂0 with η̂0 ¼ 0.59ð2Þ.
We analyze the surface magnetic fluctuations ΓðkÞ ¼

L2hkm⇀ðkÞk2i with m
⇀ðkÞ ¼ ð1=L2ÞPr S⃗re

ik·r, where the
summation runs over sites on the surface and k denotes a
Fourier mode. As shown in Figs. 2(a) and 2(b), the
magnetic fluctuations χ0 ¼ Γð0; 0Þ (susceptibility) and
χ1 ¼ Γð2π=L; 0Þ have the distinct FSS behaviors χ0 ∼
L2½lnðL=l0Þ�−η̂0 and χ1 ∼ L2½lnðL=l0Þ�−η̂, with η̂ ≈ η̂0 þ 1.
Motivated by these observations as well as the two-distance
scenarios in high-dimensional OðNÞ critical systems [22–
26] and quantum deconfined criticality [27], we conjecture
that the FSS of critical two-point correlation behaves as

gðrÞ ∼
� ½lnðr=r0Þ�−η̂; ln r ≤ O½ðlnLÞη̂0=η̂�;
½lnðL=l0Þ�−η̂0 ; ln r ≥ O½ðlnLÞη̂0=η̂�; ð4Þ

where r0 and l0 are nonuniversal constants. By Eq. (4), we
point out two coexisting features: the r-dependent behavior
½lnðr=r0Þ�−η̂ and the large-distance r-independent plateau
½lnðL=l0Þ�−η̂0 . Equation (4) is an explanation for our numeri-
cal results and compatible with the FSS of second-moment
correlation length at the extraordinary transition of the O(3)
model [19,28]. Recently, a two-distance scenario was used
to describe the two-point correlation of the OðnÞmodel at a
marginal situation (the upper critical dimensionality) [25]
and confirmed by large-scale simulations on hypercubic
lattices up to 7684 sites [26]. The open surfaces of model (3)
are at the lower critical dimensionality (ds ¼ 2) and also
belong to marginal situations.
We confirm the scaling relation between η̂0 and the RG

parameter of the helicity modulus. The helicity modulus ϒ
measures the response of a system to a twist in boundary
conditions [29]. The definition is given in the Supplemental
Material [30]. Figure 2(c) demonstrates that ϒ scales as
ϒL ∼ 2α lnL with the RG parameter α ¼ 0.27ð2Þ. Figure 3
simultaneously illustrates the universality of η̂0 and α in the
extraordinary regime. Meanwhile, the scaling relation
αη̂0 ¼ 1=ð2πÞ is evidenced, conforming to the predicted
form [6]

η̂0 ¼ N − 1

2πα
: ð5Þ

FIG. 1. Phase diagram of the XY model (3). The horizontal axis
is for the surface coupling enhancement κ and the vertical axis
relates to the bulk coupling K by 1=K. Phases are denoted by the
abbreviations BD (bulk disorder), BO (bulk order), SD (surface
disorder), SOq (surface quasi-long-range order), and SO (surface
order). The ordinary, the extraordinary-log, and the SD-SOq

critical lines meet together at the special critical point. The
topology of the phase diagram is well known, but the nature of the
extraordinary transition remains a puzzle [6]. Parameters denoted
by red circles are used in this work to analyze the extraordinary-
log universality class.
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According to Eq. (4), the exponent η̂0 characterizes the FSS
of the height of the plateau. Equation (5) is not exactly the
original prediction in Ref. [6], where the exponent η̂ for r-
dependent behavior obeys the relation η̂ ¼ ðN − 1Þ=ð2παÞ.
Technique aspects.—To explore the SCB, we fix the

bulk coupling strength at Kc. Previously, two of us and
co-workers performed simulations utilizing the Prokof’ev-
Svistunov worm algorithms [31,32] on periodic simple-
cubic lattices with Lmax ¼ 512, and obtained 1=Kc ¼
2.2018441ð5Þ [33]. This estimate was confirmed by an
independent Monte Carlo study [34]. Here, we simulate
model (3) at 1=Kc ¼ 2.2018441 using Wolff’s cluster
algorithm [35] on simple-cubic lattices with Lmax ¼ 256.
The original procedure in Ref. [35] is adapted to model (3).
We analyze the extraordinary transitions at κ ¼ 1, 1.5, 3,
and 5, and the special transition at κs ¼ 0.6222 [12]. For
each κ, the number of Wolff updating steps is up to 1.2 ×
108 for L ≤ 32 and ranges from 1.7 × 108 to 6.1 × 108 for

L ≥ 48. See the Supplemental Material [30] for details,
which includes Refs. [36,37].
Our conclusions are based on FSS analyses performed

by using least-squares fits. Following Refs. [34,38], the
function curve_fit() in Scipy_library is adopted. For cau-
tion, we compare the fits with the benchmarks from
implementing Mathematica’s NonlinearModelFit function
as Ref. [39]. The fits with the Chi squared per degree of
freedom χ2=DOF ∼ 1 are preferred. We do not trust any
single fit and final conclusions are drawn based on
comparing the fits that are stable against varying Lmin,
the minimum size incorporated.
Emergence of logarithmic universality.—Figure 4(a)

demonstrates the two-point correlation function gðrÞ for
the extraordinary transition at κ ¼ 1. The large-distance
behavior can be monitored by the L dependence of
gðL=2Þ. According to Eq. (4), we have a scaling formula
gðL=2Þ ∼ ½lnðL=l0Þ�−η̂0 . We perform least-squares fits to
this formula and obtain η̂0 ¼ 0.596ð2Þ, l0 ¼ 0.94ð1Þ, and
χ2=DOF ≈ 0.73, with Lmin ¼ 16. As Lmin is varied, pre-
ferred fits are also obtained (Table I). By comparing the fits,
our final estimate of η̂0 for κ ¼ 1 is η̂0 ¼ 0.59ð1Þ. In the
Supplemental Material [30], we present similar analyses for
κ ¼ 1.5, 3, and 5, for which the final estimates are η̂0 ¼
0.60ð1Þ (κ ¼ 1.5), 0.58(1) (κ ¼ 3), and 0.58(2) (κ ¼ 5). It
is therefore confirmed that gðL=2Þ obeys the logarithmic
scaling gðL=2Þ ∼ ½lnðL=l0Þ�−η̂0 , with a universal exponent
η̂0 ¼ 0.59ð2Þ. As displayed in the Supplemental Material
[30], the fits by the conventional power-law ansatz (1) have
poor qualities and give unstable results.
Existence of two distinct exponents.—For a verification

of Eq. (4), we analyze the FSS of surface magnetic
fluctuations. In the Monte Carlo simulations, we sample
χ2 ¼ Γð2π=L; 2π=LÞ as well as χ0 and χ1.
According to Eq. (4), an r-independent plateau emerges

at large distance. This plateau contributes to the magnetic
fluctuations at zero mode but not to those at nonzero

FIG. 2. Results for the extraordinary-log transitions at κ ¼ 1, 1.5, 3, and 5. Statistical errors are much smaller than the size of symbols.
(a) Log-log plot of the two-point correlation gðL=2Þ and the scaled susceptibility χ0L−2 versus lnðL=l0Þ. The parameter l0 is κ dependent
and obtained from least-squares fits. Dashed lines have the slope −0.59 and denote the critical exponent η̂0 ¼ 0.59ð2Þ. (b) Log-log plot
of the scaled magnetic fluctuations χ1L−2 versus lnðL=l0Þ. Dashed lines have the slope −1.59 and denote the exponent η̂ ≈ 1.59.
(c) Scaled helicity modulusϒL versus L. The horizontal axis is in a log scale. Dashed lines have the slope 0.54 and relate to the universal
RG parameter α ¼ 0.27ð2Þ by 2α.

FIG. 3. The critical exponent η̂0 estimated from gðL=2Þ and χ0,
the RG parameter α from ϒ, and their product αη̂0. Error bars are
plotted with symbols. The shadowed areas, whose heights
represent two error bars, denote the ranges of our final estimates
for η̂0 and α. The red dashed line denotes the predicted value
αη̂0 ¼ 1=ð2πÞ by RG.

PHYSICAL REVIEW LETTERS 127, 120603 (2021)

120603-3



modes. The ratio χ0=χ1 at extraordinary transitions is
shown in Fig. 4(b). As L → ∞, the ratio keeps increasing,
implying distinct FSS of χ0 and χ1.
More precisely, χ0 is expected to scale as χ0∼

L2½lnðL=l0Þ�−η̂0 . The results of scaling analyses for κ ¼ 1
are illustrated in Table I and those for κ ¼ 1.5, 3, and 5 are
given in the Supplemental Material [30]. Comparing
preferred fits, we obtain η̂0 ¼ 0.60ð1Þ (κ ¼ 1), 0.59(2)
(κ ¼ 1.5), 0.58(2) (κ ¼ 3), and 0.58(1) (κ ¼ 5). These

estimates of η̂0 agree well with those determined from
the L dependence of gðL=2Þ, hence the final result η̂0 ¼
0.59ð2Þ is confirmed.
We analyze the magnetic fluctuations χ1 and χ2 at

nonzero Fourier modes by performing fits to χk≠0∼
L2½lnðL=l0Þ�−η̂. We confirm the drastic decays of χ1L−2

and χ2L−2 upon increasing lnL. For reducing the uncer-
tainties of fits, we fix l0 at those obtained from the scaling
analyses of χ0, and estimate η̂ ≈ 1.7 over κ ¼ 1, 1.5, 3, and
5. From the log-log plot of χ1L−2 versus lnðL=l0Þ in
Fig. 2(b), it is seen that the data nearly scale as χ1L−2 ∼
½lnðL=l0Þ�−η̂ with η̂ ≈ 1.59. A similar result is obtained for
χ2L−2 (Supplemental Material [30]). Hence, χ1 and χ2
obey the logarithmic FSS formula χk≠0 ∼ L2½lnðL=l0Þ�−η̂,
with η̂ ≈ 1.6.
Our results for the FSS of χ0 and χ1 are also compatible

with the Monte Carlo data [19,28] of the second-moment
correlation length ξ2nd, which scales as ðξ2nd=LÞ2∼
ðχ0=χ1 − 1Þ ∼ lnL. The relation η̂ ¼ η̂0 þ 1 is implied.
As η̂ is much larger than η̂0, the two-distance scenario (4)

indicates that the r-dependent contribution decays fast. It
explains the profile of gðrÞ in Fig. 4(a), where the large-
distance plateau dominates.
By contrast, the special transition at κs belongs to the

standard scenario (1) of continuous transition. The r-
dependent behavior converges to the power law
gðrÞ ∼ r−η, which is comparable with the contribution from
gðL=2Þ ∼ L−η. Moreover, the magnetic renormalization
exponent yh relates to the anomalous dimension η by
yh ¼ ð4 − ηÞ=2, and the magnetic fluctuations χ0, χ1, and
χ2 all scale as L2yh−2. As shown in Fig. 4(b), the ratio χ0=χ1
at κs converges fast to a constant upon increasing L. More
results for gðrÞ, χ0, χ1, and χ2 are given in the Supplemental
Material [30].
Scaling relation.—It was predicted [6,28] that the scaled

helicity modulus ϒL diverges logarithmically as ϒL∼
2α lnL, with α a universal RG parameter. Further, the
universal form (5) of scaling relation was established [6].
The form is supported by the Monte Carlo results of an
O(3) ϕ4 model [19].
We sample ϒ of model (3) by Monte Carlo simulations.

The dependence of ϒL on lnL is shown in Fig. 2(c) for
κ ¼ 1, 1.5, 3, and 5. For each κ, a nearly linear dependence
is observed in large-L regime. Further, we perform a FSS
analysis of ϒ according to ϒL ¼ 2α lnLþ Aþ BL−1,
where A and B are constants. We explore the situations
with and without the correction term BL−1 separately.
Stable fits are achieved, with the final estimates of α being
α ¼ 0.26ð2Þ (κ ¼ 1), 0.27(1) (κ ¼ 1.5), 0.28(1) (κ ¼ 3),
and 0.27(1) (κ ¼ 5). Comparing these estimates, the
universal value of α is determined to be α ¼ 0.27ð2Þ.
As shown in Fig. 3, the scaling relation (5) between α

and η̂0 is confirmed. According to Eq. (4), η̂0 characterizes
the logarithmic FSS for the height of the plateau.

FIG. 4. (a) The two-point correlation gðrÞ for the extraordinary-
log transition at κ ¼ 1 with L ¼ 8, 16, 32, 64, 128, and 256. The
dashed line denotes the logarithmic decaying ½lnðL=l0Þ�−0.59 in
the large-distance limit. (b) The ratio χ0=χ1 of magnetic fluctua-
tions versus L for the extraordinary-log transitions at κ ¼ 1, 1.5,
3, and 5, and for the special transition at κs ¼ 0.6222. In both
panels, statistical errors are much smaller than the sizes of the
data points.

TABLE I. Estimates of the critical exponent η̂0 and the RG
parameter α for the extraordinary-log transition at κ ¼ 1. η̂0 is
estimated from the scaling formulas gðL=2Þ ∼ ½lnðL=l0Þ�−η̂0
and χ0 ∼ L2½lnðL=l0Þ�−η̂0 , and α is determined from
ϒL ¼ 2α lnLþ Aþ BL−1.

Lmin χ2=DOF η̂0 or α l0 or A

gðL=2Þ 16 2.91=4 0.596(2) 0.94(1)
32 0.66=3 0.592(3) 0.97(2)
48 0.58=2 0.591(5) 0.98(4)

χ0 32 3.46=3 0.603(2) 1.13(2)
48 0.08=2 0.598(4) 1.18(3)
64 0.02=1 0.597(5) 1.19(5)

ϒ 8 5.46=4 0.255(3) 0.41(2)
16 3.33=3 0.265(7) 0.32(6)
32 2.51=2 0.25(2) 0.4(2)
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Discussions.—We provide strong evidence for the emer-
gence of the extraordinary-log universality class [6]. We
propose the two-distance scenario (4) for the FSS of the
two-point correlation function, where a large-distance
plateau emerges. The height of the plateau decays loga-
rithmically with L by the exponent η̂0, which obeys the
scaling relation (5) with the RG parameter of helicity
modulus. The two-distance scenario is supported not only
by the Monte Carlo data for N ¼ 2 of this work, but also by
the results for N ¼ 3 in Ref. [19].
A variety of open questions arise. First, it is shown

essentially that a two-dimensional XY system with finely
tuned long-range interactions exhibits logarithmic univer-
sality. Is it possible to formulate the interactions in a
microscopic Hamiltonian? Second, is there a classical-
quantum mapping for the two-distance scenario that holds
at the OðNÞ quantum critical points [16–18]? Third, as
shown in Ref. [26], the introduction of unwrapped distance
is crucial for verifying the short-distance behavior in two-
distance scenario. The behavior of unwrapped distance in
the extraordinary-log universality remains unclear. Finally,
we note that, as recently observed for the five-dimensional
Ising model [40], lattice sites can be decomposed into
clusters, and interesting geometric phenomena associated
with the two-distance scenario may arise [41].
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