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Variational quantum algorithms are proposed to solve relevant computational problems on near term
quantum devices. Popular versions are variational quantum eigensolvers and quantum approximate
optimization algorithms that solve ground state problems from quantum chemistry and binary optimization
problems, respectively. They are based on the idea of using a classical computer to train a parametrized
quantum circuit. We show that the corresponding classical optimization problems are NP-hard. Moreover,
the hardness is robust in the sense that, for every polynomial time algorithm, there are instances for which
the relative error resulting from the classical optimization problem can be arbitrarily large assuming that
P ≠ NP. Even for classically tractable systems composed of only logarithmically many qubits or free
fermions, we show the optimization to be NP-hard. This elucidates that the classical optimization is
intrinsically hard and does not merely inherit the hardness from the ground state problem. Our analysis
shows that the training landscape can have many far from optimal persistent local minima This means
gradient and higher order descent algorithms will generally converge to far from optimal solutions.
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Recent years have seen enormous progress toward large-
scale quantum computation. A central goal of this effort is
the implementation of a type of quantum computation that
solves computational problems of practical relevance faster
than any classical computer. However, the noisy nature of
quantum gates and the high overhead cost of noise
reduction and error correction limit near term devices to
shallow circuits [1].
Variational quantum algorithms (VQAs) have been

proposed to bring us a step closer to this goal. Here, an
optimization problem is captured by a loss function given
by expectation values of observables with respect to states
generated from a parametrized quantum circuit. Then a
classical computer trains the quantum circuit by optimizing
the expectation value over the circuit’s parameters. Figure 1
illustrates a possible VQA routine. Popular candidates to
be used on near term devices are quantum approximate
optimization algorithms (QAOAs) [2] and variational
quantum eigensolvers (VQEs) [3]; see Ref. [4] for a review.
VQEs are proposed, for instance, to solve electronic

structure problems, which are central to quantum chemistry
and material science. Proposals of QAOAs include
improved algorithms for quadratic optimization problems
over binary variables such as the problem of finding the
maximum cut of a graph (MaxCut). For hybrid classical-
quantum computation to be successful, two challenges
need to be overcome. First, one needs to find parametrized
quantum circuits that have the expressive power to yield a
sufficiently good approximation to the optimal solution of
relevant optimization problems (i.e., the model mismatch is
small). Second, the classical optimization over the param-
eters of the quantum circuit needs to be solved quickly

enough and with sufficient accuracy. We will focus on this
second challenge.
For the classical optimization several heuristic

approaches are known, most of which are based on gradient
descent ideas and higher order methods. This is convenient,
as with the parameter shift rule [5] the gradient can be
calculated efficiently. Methods include standard Broyden-
Fletcher-Goldfarb-Shanno optimization and extensions [6]
and natural gradient descent [7], which has a favorable
performance for at least certain easy instances [8]. Second
order methods require significant overhead in the number
of measurements but can yield better accuracy [9].
Quantum analytic descent [10] uses certain classical
approximations of the objective function in order to reduce
the number of quantum circuit evaluations at the cost of a
higher classical computation effort.

FIG. 1. Sketch of a VQA optimization routine. This Letter
addresses the complexity of the classical optimization part (red).
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However, it has also been shown recently that there are
certain obstacles that need to be overcome to render the
classical optimization successful. The training landscape
can have so-called barren plateaus where the loss function
is effectively constant and hence yields a vanishing
gradient, which prevents efficient training. This phenome-
non can be caused, for example, by random initializations
[11] and nonlocality of the observable defining the loss
function [12]. Also, sources of randomness given by noise
in the gate implementations can cause similar effects [13].
Moreover, the problem of barren plateaus cannot be fully
resolved by higher order methods [14].
In this Letter, we show that the existence of persistent

local minima can also render the training of variational
quantum algorithms infeasible. For this purpose, we encode
the NP-hard MaxCut problem into the corresponding
classical optimization task for several versions of VQAs,
which have many far from optimal local minima.
Specifically, we obtain hardness results concerning the

optimization in four different settings: (i) We use an oracle
description of a quantumcomputer and show that the classical
optimization of VQA is an NP-hard problem, even if it needs
to be solved only within constant relative precision. Next,
we remove the oracle from the problem formulation by
focusing on classically tractable systems where the under-
lying ground state problem is efficiently solvable. Here, we
consider quantum systemswhere theHilbert space dimension
(ii) scales polynomially in the number of parameters (i.e.,
logarithmically many qubits) or (iii) is composed of free
fermions. (iv) If the setup is restricted to the QAOA type, we
show that our hardness results also hold.
Connection to complexity theory.—The decision version

of VQA optimization is in the complexity class QCMA,
problems that can be verified with a classical proof on a
quantum computer. The class QMA, which allows for the
proof to be a quantum state, contains QCMA. Much about
the relationship between classical MA, QCMA, and QMA
is still unknown. Notably, finding the ground state energy
of a local Hamiltonian is QMA-hard [15,16]. This means
that if QCMA ≠ QMA, then VQA algorithms will not be
able to solve the local Hamiltonian problem, but only
problems contained in QCMA. Our results imply that even
if the relevant energy eigenstates are contained in the VQA
ansatz, the classical optimization may still be at least as
difficult as solving NP problems.
Notation.—Weuse thenotation ½n� ≔ f1;…; ng.ThePauli

matrices aredenotedbyσx,σy, andσz.AnoperatorX actingon
subsystem j of a larger quantum system is denoted by XðjÞ;
e.g., σð1Þx is the Pauli-xmatrix acting on subsystem 1. By kXk
we refer to the operator norm of operator X.
The number of edges of a graph with adjacency matrix A

is denoted by jEðAÞj. By MaxCut(A) we denote the solution
of MaxCut for an adjacency matrix A; see Problem 1.
Throughout, we consider only adjacency matrices A of

undirected, unweighted graphs with at least one edge; i.e.,

A ∈ f0; 1gd×d is a nonzero symmetric binary matrix with a
vanishing diagonal.
A continuous MaxCut optimization.—We introduce a

continuous trigonometric problem which we show to be
NP-hard to optimize and approximate. This is related to
earlier work on the optimization of trigonometric functions
[17] for which NP-hardness is known. For the specific class
of functions, we also show the existence of an approxi-
mation ratio explicitly. Below, we use this problem to
obtain hardness results for various VQA versions.
Problem 1 (MaxCut).—Instance: The adjacency matrix

A ∈ f0; 1gd×d of an unweighted undirected graph.
Task: Find S ⊂ ½d� that maximizes

P
i∈S;j∈½d�nS Ai;j.

MaxCut is famously known to be NP-hard. Additionally,
MaxCut is APX-hard, meaning that for every polynomial
time algorithm there exist some instances, where the approxi-
mation ratio α, the ratio between the algorithmic solution and
the optimal solution, is bounded by α ≤ αmax < 1, assuming
that P ≠ NP. Itwas shown that if the uniquegames conjecture
is true, then the best approximation ratio of a polynomial
algorithm is αmax¼min0<θ<πðθ=πÞ=½1−cosðθÞ=2�≈0.8786
[18], which is also what the best known algorithms can
guarantee [19]. Without use of this conjecture, it has been
proven that αmax ≤ 16=17 ≈ 0.941 [20]. For our purposes we
define a continuous, trigonometric version of MaxCut.
Minima of real valued functions are given by real numbers
that may not have an efficient numerical representation.
However, it is commonly said that a minimization problem
is solved if it is solved to exponential precision, which is the
convention we will also be using throughout this Letter. The
intuitive notion is that the hardness does not come from the
difficulty of representing the minimum.
Problem 2 (Continuous MaxCut).—Instance: The adja-

cency matrix A ∈ f0; 1gd×d of an unweighted graph.
Task: Find ϕ ∈ ½0; 2πÞd that minimizes

μðϕÞ ≔ 1

4

Xd
i;j¼1

Ai;j½cosðϕiÞ cosðϕjÞ − 1�: ð1Þ

Lemma 1.—Problem 2 is NP-hard. Moreover, if P ≠ NP,
for every polynomial time algorithm there exists an
approximation ratio which is at most that of MaxCut.
See Sec. I A of the Supplemental Material (SM) [21] for

a proof. There, we also argue that gradient based methods
often get stuck in local minima, practically resulting in an
approximation ratio of α ¼ 1=2.
VQA optimization with quantum computer access.—The

common application of VQAs is within quantum comput-
ing, where a quantum computer is used to estimate the
expectation value and a classical algorithm chooses the
circuit parameters of the quantum computer. We describe
the information obtained from the quantum computer with
oracle calls made by the classical algorithm.
Problem 3 (VQA minimization, oracular formulation).—

Instance: A set of generators fHigi∈½L� and an observable O
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acting on H ¼ ðC2Þ⊗N , given in terms of their Pauli basis
representation.
Oracle access: We set jΨðϕÞi ≔ ULðϕLÞ � � �U1ðϕ1Þj0i
with UiðϕÞ ¼ e−iHiϕ. The oracle O returns hOðϕÞi ≔
hΨðϕÞjOjΨðϕÞi, for a given ϕ, up to any desired poly-
nomial additive error.
Task: Find ϕ ∈ RL that minimizes hOðϕÞi provided access
to O.
We use the oracle to outsource difficult computations,

which is similar to how a quantum computer would help in a
physical implementation. The motivation of our oracle is that
the complexity of Problem 3 captures the complexity of only
the classical optimization effort in hybrid quantum computa-
tions. The oracle can be seen as postselecting on the successful
runs only, therefore making the return deterministic.
Proposition 1.—Assuming P ≠ NP there is no deter-

ministic classical algorithm that solves Problem 3 in
polynomial time.
It is straightforward to show that Problem 3 is NP-hard to

solve. Essentially, we use a diagonal observable for which
the ground state problem is NP-hard and use unitaries to
reach every computational basis state.
Proof.—We prove the proposition via a reduction of

Problem 2 to Problem 3. For this, let N ¼ d, and let O be
the usual Ising Hamiltonian encoding of MaxCut,

O ≔
1

4

Xd
i;j¼1

Ai;jðσðiÞz σðjÞz − 1Þ: ð2Þ

We use L ¼ d layers with

Hi ≔
σðiÞy
2

; i ∈ ½d�; ð3Þ
as generators. By direct calculation we find that

hOðϕÞi ¼ hΨðϕÞjOjΨðϕÞi

¼ 1

4

Xd
i;j¼1

Ai;j½cosðϕiÞ cosðϕjÞ − 1� ¼ μðϕÞ; ð4Þ

which is the objective function of Problem 2.
To analyze the overall approximation power of an

algorithm we define the approximation error for an
instance as

δ ≔
hOai − λminðOÞ

λmaxðOÞ − λminðOÞ ; ð5Þ

where λminðOÞ is the smallest eigenvalue of the observable
O and λmaxðOÞ is the largest; the expectation value of
the final output of the algorithm is hOia ≥ λminðOÞ. We
normalize by the spectral width

ΔλðOÞ ≔ λmaxðOÞ − λminðOÞ; ð6Þ
as this ensures that δ ∈ ½0; 1�. There are two error con-
tributions: (i) the model mismatch δm is the approximation
error resulting from the ansatz class being unable to

represent the ground state, and (ii) the optimization error
δo is the error due to the classical algorithm not converging
to the optimal solution within the class. That is,

δ ¼ hOimin − λminðOÞ
ΔλðOÞ þ hOia − hOimin

ΔλðOÞ ð7Þ

¼ δm þ δo; ð8Þ
where hOimin refers to the smallest expectationvalue over the
ansatz class, i.e., the global minimum over the circuit param-
eters. Sinceweare interested inclassical algorithms,wedefine
an optimization error, in a manner similar to how approxima-
tion ratios are defined for NP optimization problems (the
complexity class APX), over all considered instances.
Definition 1 (Optimization error).—The optimization

error of an optimization algorithm Δ ∈ ½0; 1� of an opti-
mization algorithm is the smallest number such that

Δ ≥
hOia − hOimin

ΔλðOÞ ð9Þ

for all considered VQA instances.
Corollary 1.—If P ≠ NP, then there exists no polyno-

mial time algorithm which can guarantee any optimization
error Δ < 1 for all VQAs defined by Problem 3.
In order to prove the corollary, we show in Sec. I B of the

SM that the existence of such an algorithmwould allowone to
efficiently solve the MaxCut problem to arbitrary precision.
Logarithmic number of qubits.—We can improve on

the previous result by allowing only N ∈ O½logðdÞ� many
qubits, where d is the input length of the MaxCut instance.
This drastically reduces the system’s size and complexity.
Notably, since the Hilbert space is now only of polynomial
dimension, both the calculation of expectation values and
the ground state problem can be computed efficiently.
Yet we show that VQA optimization is still NP-hard. This
means that the classical optimization does not merely
inherit the hardness of the ground state problem but rather
is intrinsically difficult. Since the operations are efficiently
tractable, we do not require oracle access to a quantum
computer to analyze the problem. Also, for convenience,
instead of the Pauli basis we use the computational basis of
the Hilbert space H of dimension dimðHÞ ¼ 2N ≕ n. This
gives the following problem description.
Problem 4 (VQAminimization problem).—Instance: An

initial state jΨ0i ∈ Cn, a set of generators fHigi∈f1;…;Lg ⊂
HermðCnÞ, where L is the number of layers and an
observable O ∈ HermðCnÞ.
Task: For jΨðϕÞi≔ULðϕLÞ���U1ðϕ1ÞjΨ0i with UiðϕÞ¼
e−iHiϕ, find a ϕ ∈ RL that minimizes hOðϕÞi ≔
hΨðϕÞjOjΨðϕÞi.
Theorem 1.—VQA optimization (Problem 4) is NP-hard.
Proof.—We prove the theorem via a many-one reduction

from Problem 2. Let A ∈ f0; 1gd×d be the adjacency matrix
of an unweighted graph. On the Hilbert space H ¼ C2d,
we first define an observable in the standard basis as
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O0 ≔
d
8
× A ⊗

�
1 1

1 1

�
; ð10Þ

where ⊗ denotes the Kronecker product. For the actual
observable we modify the diagonal as

Oi;j ¼
�O0

i;j if i ≠ j;

−
P

2d
α¼1 O

0
α;j otherwise:

ð11Þ

The initial state and generators are chosen as

jΨ0i ≔
1ffiffiffiffiffiffi
2d

p
X2d
j¼1

jji; ð12Þ

Hi ≔ j2i − 1ih2i − 1j − j2iih2ij; ð13Þ
where we take L ¼ d layers. As the parametrized state we
obtain

jΨðϕÞi ¼ 1ffiffiffiffiffiffi
2d

p
X2d
j¼1

ðe−iϕj j2j − 1i þ eiϕj j2jiÞ ð14Þ

and

hOðϕÞi ¼ 1

16

X
s;p∈fþ;−g

Xd
i;j¼1

eisϕiAi;je−ipϕj −
1

4

Xd
i;j¼1

Ai;j

¼ 1

4

Xd
i;j¼1

Ai;j½cosðϕiÞ cosðϕjÞ − 1� ¼ μðϕÞ ð15Þ

as corresponding expectation value. This completes the
reduction of Problem 2 to Problem 4.
From this result, NP-completeness follows for the

decision version, where an additional parameter a ∈ R is
given as input and the question is whether there are angles
for which μðϕÞ ≤ a.
Corollary 2.—The decision version of Problem 4 is

NP-complete.
Proof.—The optimal ϕ can be thought of as the proof,

which is hard to obtain but easy to verify.
We now show that the L ¼ 1 layer is sufficient to show

hardness. For this purpose we use a certain form of
ergodicity of Hamiltonians, where the energy levels are
such that the generated time evolution can approximate
arbitrary phases. We explain this concept in Sec. I C of the
SM [21] and use it here to prove the following theorem.
Theorem 2.—VQA optimization (Problem 4) is NP-hard

for the L ¼ 1 layer.
Proof.—We choose the generator as a linear combination

of terms from Eq. (13):

H ¼
Xd
j¼1

EjHj

¼
Xd
j¼1

Ejðj2j − 1ih2j − 1j − j2jih2jjÞ ð16Þ

andUðϕÞ¼ expð−iϕHÞ. The initial state,Hj, andO remain
identical. Since the summands of the Hamiltonian com-
mute, this leads to the expectation value

hOðϕÞi¼
Xd
i;j¼1

Ai;j½cosðEiϕÞcosðEjϕÞ−1�¼μðEϕÞ: ð17Þ

If fEigi are chosen to be ergodic—i.e., Eϕ can approximate
any phase vector ϕ to the desired accuracy—then hOðϕÞi
approximates μðϕÞ, which we have shown to be NP-hard to
optimize in Lemma 1.
By viewing the VQA in Theorem 2 as a continuous time

evolution for logarithmically many qubits, we obtain the
following result. Even though it answers a very basic
question, we are unaware of this statement having been
explicitly proven before.
Corollary 3.—For a system with logarithmically many

qubits, we consider the expectation value of a (unitarily)
time evolved observable hOðtÞi starting from some initial
state. Minimizing the expectation value over t ∈ Rþ

0 is then
NP-hard.
Quantum approximate optimization algorithms.—In

Sec. II of the SM [21], we consider QAOAs [2], a subclass
of VQAs, which are inspired by adiabatic quantum com-
putation [22]. We show that the hardness of the classical
optimization also translates to QAOA by proofing the
equivalents of Theorem 1 and 2. We also derive a lower
bound on the optimization error of VQA for systems of
polynomial Hilbert space dimension,

Δ ≥
1 − αmax

2
; ð18Þ

where αmax is the approximation ratio of MaxCut.
Free fermionic models.—Free fermionic models are a

certain class of fermionic many-body systems that are
without actual particle-particle interactions. They are espe-
cially interesting for us, as they can be simulated efficiently
for so-called Gaussian input states and observables.
Fermionic creation and annihilation operators are

denoted by c†j and cj. They satisfy the anticommutation

relations fc†i ; cjg ¼ δi;j and fci; cjg ¼ 0 for all i, j. We call
an operator quadratic or Gaussian if it is a quadratic
polynomial in the creation and annihilation operators. We
will consider (balanced) quadratic observables of the form

H ¼
X
i;j

hi;j c
†
i cj ð19Þ

and will call h the coefficient matrix of H, which is
Hermitian. Also, in the following, we denote operators
by capital letters and their respective coefficient matrices by
lowercase letters.
A quantum state is Gaussian if it can be arbitrarily well

approximated by a thermal state of a quadratic Hamiltonian.
For a Hamiltonian H we denote its ground state by
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ρ½H� ¼ lim
β→∞

e−βH

Tr½e−βH� : ð20Þ

From this we can define the VQA problem in the free
fermionic setting. In Sec. III of the SM [21], we derive some
background results which help us in our proof.
Problem5 (VQAminimization problem, free fermions).—

Instance: Coefficient matrices h0; h1;…; hL; o ∈ HermðCnÞ.
Task: The coefficient matrices define quadratic observables
H0; H1;…; HL and O via Eq. (19) and ρ0 ¼ ρ½H0�. For the
evolved state

ρðϕÞ ≔ ULðϕLÞ � � �U1ðϕ1Þρ0U†
1ðϕ1Þ � � �U†

LðϕLÞ;

with UiðϕÞ ¼ e−iHiϕ, find a ϕ ∈ RL that minimizes
hOðϕÞi ≔ Tr½OρðϕÞ�.
Theorem 3.—Problem 5 is NP-hard, even if the initial

state ρ0 is pure.
Proof.—We prove the theorem via a reduction of

Problem 2 to Problem 5.
For the VQA setup, we use n ¼ d × 2 fermionic modes

ci with i ∈ ½2d� and L ¼ d layers. To encode Problem 2 we
define h0, fhigi∈½L�; o ∈ HermðC2d×2dÞ as follows:

h0 ¼
�
1 −

1
n

�
; ð21Þ

hi ¼ Ei ⊗
�
1 0

0 −1

�
; i ∈ ½d�; ð22Þ

where 1a;b ¼ 1 and Ei;a;b ¼ δi;a;b (Kronecker delta) for all
i, a, b. The coefficient matrix o is given by the matrix O
defined in Eqs. (10) and (11), which is used for the
encoding of the adjacency matrix A ∈ f0; 1gd×d from
the input of Problem 2. We define Γi;j ≔ Trðc†jciρ0Þ as
the correlation matrix of ρ0. In the next three steps, we use
calculation rules based on two-point correlations that are
explained in the SM [21]. First, it follows that Γ ¼ 1=ð2dÞ.
Second, as the eigenvalues of h0 are λ ¼ ð−1; 1;…; 1Þ, ρ0
describes a pure state. Third, we obtain the coefficient
matrix of OðϕÞ in the Heisenberg picture as

oðϕÞ ¼ eihdϕd � � � eih1ϕ1o e−ih1ϕ1 � � � e−ihdϕd : ð23Þ
With these prerequisites we can derive the following
expectation value:

hOðϕÞi ¼ Tr

�X2d
i;j¼1

oðϕÞi;jc†i cjρ0
�

¼
X
i;j

oðϕÞi;jΓj;i ¼
1

2d

X
i;j

oðϕÞi;j

¼ 1

4
Ai;j½cosðϕiÞ cosðϕjÞ − 1� ¼ μðϕÞ; ð24Þ

where the last step analogously follows Eq. (15). As this
gives the objective function from Problem 2, this completes
the desired reduction.
Conclusion and outlook.—Our results show that classical

training poses a challenge in VQA based hybrid quantum
computations. Not only is optimizing VQA algorithms NP-
hard, but also no polynomial time algorithm can have an
optimization error Δ < 1 in all instances (assuming that
P ≠ NP). Additionally, for significantly simpler systems,
such as those composed of either logarithmically many
qubits or free fermions, the hardness results already hold.
This also shows that hardness does not merely derive from
the ground state problem. We extended these results further
to optimization on a single layer of gates, to continuous
unitary time evolution, and to QAOA problems.
We encoded NP-hard problems into local extrema of the

optimization landscape of VQA problems. Gradient descent
type optimization and higher order methods can converge to
any local minimum, determined mostly by the initialization.
Based on this observation, we explicitly show in Sec. II of
the SM [21] that, even for logarithmically many qubits, these
methods have an approximation error of Δ ≥ 1=4. For our
particular VQA instance, this is significantly worse than
what modern efficient MaxCut solvers can guarantee. This
result emphasizes the need for effective initialization pro-
cedures for VQA algorithms and poses the challenge of
finding nonlocal heuristics for VQA optimization to over-
come the poor conversion caused by these persistent local
minima to reach smaller optimization errors.
In order to put our results into perspective, we briefly

compare them to other hardness results for relevant optimi-
zationproblems. For instance, optimizationwithin thedensity
matrix renormalization group method is NP-hard [23].
However, hardness holds only for errors scaling as the inverse
of the bond dimension, and there are variants where con-
vergence can be rigorously guaranteed [24]. VQA optimi-
zation is arguably more similar to the optimization in the
Hartree-Fock method. Despite being NP-hard [25], it is
widely used in many practical calculations. It is our hope
that this Letter will also help identify and overcome opti-
mization challenges for practically relevant VQA problems.
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