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Because of their strong and tunable interactions, Rydberg atoms can be used to realize fast two-qubit
entangling gates. We propose a generalization of a generic two-qubit Rydberg-blockade gate to multiqubit
Rydberg-blockade gates that involve both many control qubits and many target qubits simultaneously. This
is achieved by using strong microwave fields to dress nearby Rydberg states, leading to asymmetric
blockade in which control-target interactions are much stronger than control-control and target-target
interactions. The implementation of these multiqubit gates can drastically simplify both quantum
algorithms and state preparation. To illustrate this, we show that a 25-atom Greenberger-Horne-Zeilinger
state can be created using only three gates with an error of 5.8%.

DOI: 10.1103/PhysRevLett.127.120501

Strong, tunable interactions between Rydberg states have
positioned neutral atoms as a versatile platform for quan-
tum information science and quantum simulations. Many of
these proposed applications rely on Rydberg blockade, a
process in which a single Rydberg excitation prevents
nearby atoms from being excited to the Rydberg state. In
recent years, there have been extensive efforts to character-
ize and improve the performance of entangling two-qubit
gates based on Rydberg blockade, first proposed in Ref. [1]
and further investigated in Refs. [2–4]. This novel approach
was later followed by a variety of theoretical extensions [5–
18] and experimental implementations [19–25]. Recently,
two-qubit entangling gates have been realized experimen-
tally with high fidelities [26–30].
The long-range character of Rydberg van der Waals

(vdW) and dipole-dipole interactions opens the possibility
of engineering entangling gates involving many qubits.
Although two-qubit entangling gates are sufficient for
universal quantum computing, multiqubit entangling gates
can provide significant speedups for quantum algorithms
and state preparation. For example, multitarget Rydberg
gates [31–35] enable the implementation of Shor’s algo-
rithm in constant time [36]. Conversely, multicontrol
Rydberg gates [32,34,37–43] allow for efficient implemen-
tations of Grover’s search algorithm [44].
The conventional implementation of the two-qubit

Rydberg-blockade gate uses three fundamental steps, with
qubit states j0i; j1i encoded in the ground-state manifold

[Fig. 1(a)]. (1) A π pulse with Rabi frequency ΩðcÞ
g is

applied to the first atom (the control atom), which excites
the j0i state to a Rydberg state jci. (2) A pulse sequence
involving a Rydberg state is applied to the second atom (the

target atom). Here, we consider a 2π pulse with Rabi

frequency ΩðtÞ
g applied to the j0i state via the Rydberg state

jti (usually, jti ¼ jci, but this is not necessary). (3) A − π

pulse with Rabi frequency ΩðcÞ
g is applied to the control

atom, returning the Rydberg state to the j0i state. When the
qubits are in the j10i state, they pick up a minus sign due to

(a)

(b)

FIG. 1. (a) Pulse sequence to realize controlled-Z gates (see text
for details), where light blue (dark green) spheres represent
control (target) atoms. The above configuration realizes a C8Z8

gate. Other configurations of control and target atoms are
possible. (b) Intermediate step of the Greenberger-Horne-Zei-
linger (GHZ) state creation. Black (white) spheres indicate atoms
that are (not) part of the GHZ state. After the application of a
C4NOT8 gate in (ii), the GHZ state is increased from (i) 5 to
(iii) 13 atoms.
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the 2π pulse. Otherwise, the state is left unchanged. By
applying a Pauli-X gate to the target qubit before and after
the pulse sequence, this realizes the controlled-Z gate (CZ
gate), which applies a Pauli-Z gate to the target qubit when
the control qubit is in the j1i state.
Many previous approaches to realizing multiqubit

Rydberg gates rely on asymmetric Rydberg blockade, in
which there is a large separation of scales between different
types of Rydberg interactions [5,17,33,38,45,46]. For
example, if the control-control interaction is much smaller
than the control-target interaction, then control atoms can
blockade target atoms without blockading other control
atoms, which can be used to engineer a multicontrol gate.
In most cases, asymmetric Rydberg blockade was achieved
through the use of strong 1=r3 dipole-dipole interactions
and weaker 1=r6 vdW interactions. However, the dipole-
dipole interactions are off-diagonal, which can result in
many-body resonances and antiblockade, reducing gate
fidelity [47]. Moreover, these proposals have been limited
to gates involving either many controls or many targets, but
not both, which has potential applications for classical
verification of quantum computers [48].
In this Letter, we propose a method for engineering gates

involving many control qubits and many target qubits. This
is accomplished by combining the principles of asymmetric
blockade with the conventional two-qubit Rydberg-block-
ade gate using microwave fields. The use of microwave
fields to modify Rydberg interactions has been considered
in a variety of contexts [7,11,14,18,46,49–54]. We show
that by dressing several Rydberg states with strong micro-
wave fields, perfect asymmetric blockade can be realized,
in which intraspecies (control-control and target-target)
Rydberg interactions are negligible while interspecies
(control-target) Rydberg interactions are large. Moreover,
the control-target interactions will be diagonal dipole-
dipole interactions, preventing many-body resonances from
playing a role while still using strong dipole-dipole
interactions. We achieve this by applying two microwave
drives with different polarizations. Because of a sign
difference in the resulting dipole-dipole interaction from
each drive, the drives can be tuned so that the intraspecies
interactions cancel out with one another. Using the remain-
ing tunability, we can further suppress the intraspecies vdW
interactions. Since the intraspecies interactions are negli-
gible, the same pulse sequence can be used as in the two-
qubit case. This generalizes the CZ gate to a CkZm gate with
k control qubits andm target qubits. If all control qubits are
in the j1i state, a Pauli-Z gate is applied to each of the target
qubits. Otherwise, the target qubits are unchanged. This can
be generalized to realize a CkU1 � � �Um gate, which applies
an arbitrary controlled unitary to each target qubit [55,56].
We conclude with a discussion of the performance of these
gates compared to other approaches by considering a C8Z8

gate [Fig. 1(a)] and Greenberger-Horne-Zeilinger (GHZ)
state preparation. The latter is achieved by sequentially

applying CkNOTm gates to the k atoms at the edge of the
GHZ state and their m nearest neighbors [Fig. 1(b)].
Microwave dressing.—To achieve the desired inter-

actions, we consider the dressing scheme in Fig. 2. This
couples a Rydberg s state (L ¼ 0) to two Rydberg p states
(L ¼ 1) with different principal quantum numbers.
Although we study a specific dressing scheme, the only
requirement is that one microwave field drives a π
transition while another microwave field drives a σ tran-
sition, which will be used to destructively interfere two
interaction terms. Additional drives would provide more
tunability. The Hamiltonian for this dressing, in the rotating
frame and under the rotating wave approximation, is

Hmw ¼ −Δ0jp0ihp0j þ Ω0jsihp0j þ Ω�
0jp0ihsj

− Δþjpþihpþj þ Ωþjsihpþj þΩ�þjpþihsj; ð1Þ

where Δ0=þ ¼ ν0=þ − ω0=þ denotes the detuning of the
drives (ν0=þ and ω0=þ are the drive and transition frequen-
cies, respectively) andΩ0=þ the Rabi frequency of the drive
from jsi to jp0=þi.
Since the s and p states have different orbital angular

momenta, the resultant dressed states experience dipole-
dipole interactions. In the rotating frame of both microwave
fields, atoms i and j interact via

Vði;jÞ
dd ¼ 1 − 3 cos2 θij

r3ij
ðμ20jsipj;0ihpi;0sjj

− μ2þ=2jsipj;þihpi;þsjjÞ þ H:c:; ð2Þ

where rij is the distance between atoms i and j, θij is the
angle the displacement vector makes with the quantization
axis, and μ0 ¼ hp0jd0jsi, μþ ¼ hpþjdþjsi are transition
dipole moments, where dp ¼ êp · d is a component of the

dipole operator d and ê0 ¼ ẑ; ê� ¼∓ ðx̂� iŷÞ= ffiffiffi
2

p
. There

are additional interaction terms with different angular
dependencies that do not preserve total mL (e.g.,

FIG. 2. Dressing scheme for control and target Rydberg states
involving one s state (L ¼ 0) and two p states (L ¼ 1), where n
denotes the principal quantum number and dotted lines are not
involved in the dressing. The jsi state is coupled to the jp0i state
with Rabi frequency Ω0 and detuning Δ0. The jsi state is coupled
to the jpþi state using Rabi frequency Ωþ and detuning Δþ. The
right side of the figure illustrates the resulting dressed states
jci; jti, and the third unused dressed state.
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jsipj;þihpi;0sjj) and oscillate with frequencies 2νþ, 2ν0, or
νþ � ν0 in the rotating frame. When the two p states are
from different p-state manifolds, these interactions can be
dropped via the rotating wave approximation, although in
other contexts they can be used as a resource to engineer
useful interactions [57].
Asymmetric blockade.—Next, we discuss how to design

the dressing such that only interspecies interactions are
nonzero. Consider a general pair of unnormalized control
and target Rydberg states, jci and jti, which are eigenstates
of Hmw:

jci ∝ jsi þ c0jp0i þ cþjpþi; ð3aÞ

jti ∝ jsi þ t0jp0i þ tþjpþi: ð3bÞ

For large drive Ω0=þ ≫ Vdd [58], the two-atom Rydberg
states are product states of the one-atom Rydberg states:
jcci; jtti; jcti; jtci. This holds for N-atom Rydberg states
up to perturbative corrections, which are captured by vdW
interactions. The intraspecies interactions for jci and jti are

Vcc ¼ hccjVddjcci ∝ jc0j2μ20 − jcþj2μ2þ=2; ð4aÞ

Vtt ¼ httjVddjtti ∝ jt0j2μ20 − jtþj2μ2þ=2; ð4bÞ

where the atom indices i, j have been dropped. From this,
we see that while it is not possible to nullify the intraspecies
interactions using only a single p state, it is possible with
two p states. The sign difference is the origin of the
requirement that both π- and σ-transition drives are needed.
By fixing jcþj2 ¼ 2M2jc0j2 and jtþj2 ¼ 2M2jt0j2 where
M ¼ μ0=μþ, the intraspecies interactions are 0. Although
these two constraints are the same for both states, this does
not require jci ¼ jti because the phases and magnitudes of
the coefficients for the two states can be different.
We must also consider the off-diagonal interactions

between jci and jti. The strength of the only resonant
off-diagonal term is related to the two intraspecies inter-
actions hctjVddjtci ∝ N 4

cVcc þN 4
t Vtt, where N c=t are

state normalization factors. As a result, this interaction is
zero when the intraspecies interactions are zero. The
remaining off-diagonal terms, such as those proportional
to jccihttj, need not be reduced as long as they are
sufficiently off-resonant.
Since the interspecies interaction is the source of

Rydberg blockade in the gate, it must be large. This
interaction is

Vct ¼ hctjVddjcti ∝ c0t�0μ
2
0 − cþt�þμ2þ=2þ c:c: ð5Þ

Although this equation is similar to Eq. (4), it differs in that
the phases of the coefficients matter. The phases of c0; cþ
can be absorbed into jp0i; jpþi, leaving only the phases of

t0; tþ free. The intraspecies interaction is maximized when
t0; tþ are real and have opposite signs.
Additionally, we assume that jci and jti come from the

same drives, which are applied to all atoms. (The case of
different drives is discussed in the Supplemental Material
[56].) This enforces the constraint

hcjti ∝ 1þ t0c�0 þ tþc�þ ¼ 0: ð6Þ

Taking cþ ¼ ffiffiffi
2

p
Mc0 and tþ ¼ −

ffiffiffi
2

p
Mt0 for real t0, c0, we

find

t0 ¼
1

ð2M2 − 1Þc0
: ð7Þ

As long as M2 ≠ 1=2, both dressed states can be realized
with the same drives. The values of Ω0=þ;Δ0=þ may be
determined, up to an overall scale, by requiring that both
states are eigenvectors of Hmw. The maximum interspecies
interaction under this constraint is

Vmax
ct ¼ min

�
μ20

μ2þ=2
;
μ2þ=2
μ20

�
ðμ20 − μ2þ=2Þ; ð8aÞ

cmax
0 ¼ j2M2 − 1j−1

2; ð8bÞ

where cmax
0 denotes the value of c0 that realizes this

interaction. The min function reflects the fact that the
smaller of the two undressed dipole-dipole interactions will
set the overall scale of the interaction. Near this maximal
interaction strength, the light shifts for jci and jti become
degenerate, precluding π pulses that excite only one or the
other and violating the assumption that several off-diagonal
interactions are off-resonant. To avoid these issues, we set
c0 ¼ αcmax

0 for α ≠ 1, removing this degeneracy. While
this change reduces the interspecies interaction strength,
it remains comparable to the maximal interspecies
interaction.
For strong drive, the level structure can lead to additional

Rydberg states being dressed, such as when the fine
structure is comparable to Ω0=þ. Although this modifies
Hmw and precludes an analytic solution, it nevertheless
remains possible to realize asymmetric blockade [56].
Suppressing vdW interactions.—Since we have success-

fully eliminated the intraspecies dipole-dipole interactions
for jci and jti, intraspecies vdW interactions are relevant.
While the dipole-dipole interactions are much larger than
the vdW interactions for the same atomic separation, it is
important to compare intraspecies interactions at short
distances to interspecies interactions at long distances.
The target-target vdW interaction is particularly important,

as ΩðtÞ
g must be simultaneously stronger than the vdW

interaction and weaker than the blockade interaction Vct. In

contrast, ΩðcÞ
g is not limited by Vct. Additionally, it is
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important to ensure that the corrections remain perturbative
so higher-order processes do not lead to antiblockade and
avalanche processes [47,59–62].
The relevant vdW interactions take the form

Vði;jÞ
vdW ¼ −

CðcÞ
6 ðθijÞ
r6ij

jcicjihcicjj −
CðtÞ
6 ðθijÞ
r6ij

jtitjihtitjj

−
CðþÞ
6 ðθijÞ
r6ij

jþijihþijj −
Cð−Þ
6 ðθijÞ
r6ij

j−ijih−ijj; ð9Þ

where CðcÞ
6 ; CðtÞ

6 ; CðþÞ
6 ; Cð−Þ

6 denote the strength of the vdW
interactions for jci, jti, and the symmetric or antisymmetric
states j�i ¼ ðjcti � jtciÞ= ffiffiffi

2
p

, respectively, which are a
result of second-order nondegenerate perturbation theory
[56]. Since the off-resonant coupling strengths and energy
differences are dependent on the dressing, the strength of
the vdW interactions changes as a function of the dressing,
making them tunable [56]. Two degrees of freedom allow
this tunability. The first is the overall scale of the dressing
fields. By varying Hmw by a constant factor, the dressed
states remain the same while the light shifts change,
modifying the perturbative calculation of C6. The second
degree of freedom is encoded in α. This picture is not
qualitatively modified due to additional coupled states,
although the modification to Hmw is less trivial.
Most importantly, this allows for the ability to nullify

CðtÞ
6 . This can be understood by considering the existence of

two-atom resonances, which arise when one of the dressed
pair states under consideration (e.g., jcci) becomes degen-
erate with a different Rydberg pair state. At a resonance, the
energy difference of the two pair states passes through zero

and CðtÞ
6 changes signs, leading to zero crossings due to the

presence of multiple resonances. Because of the additional
tunable parameter, one may simultaneously identify param-
eters where the vdW interactions are most perturbative,
allowing for stronger interspecies interactions and ensuring
the validity of the dressed-state basis (hence Ωmw ≫ Vct).
In Fig. 3, we illustrate an example that uses this tunability.
Because the dipole-dipole interactions have multiple angu-
lar dependencies, vdW nullification is only valid for fixed
θij. This procedure is approximately independent of n aside
from overall energy and length scales, and the gate
performance is comparable for different n [56].
Gate performance.—There are three primary sources of

error: dissipation, vdW interactions, and imperfect block-
ade. For a square 2π pulse or two square π pulses, the
probability of decay for a single Rydberg atom is
ϵγ ¼ π=2=Ωgτ, where Ωg is the Rabi frequency of the
pulses and τ is the lifetime of the Rydberg state. The error
due to vdW interactions scales as ϵvdW ∼ ðVvdW=ΩgÞ2,
where VvdW is the total vdW blockade strength.
Similarly, the error due to imperfect blockade scales as

ϵb ∼ ðΩðtÞ
g =VbÞ2, where Vb is the total dipole-dipole block-

ade strength.
In order to investigate the performance of these gates, we

consider two scenarios using the dressing discussed in
Fig. 3. In the first, we consider a C8Z8 gate on a 4 × 4
checkerboard lattice [Fig. 1(a)]. We consider the average
fidelity [66]

F̄ðG;UÞ≡
Z

jhψ jU†Gjψij2dψ ; ð10Þ

where U is the ideal implementation of the gate, G is the
physical implementation of the gate, and the integral is
performed over the normalized Haar measure dψ . We have
assumed G is unitary since we can treat the dissipation
errors separately. Because of the large Hilbert space, we
estimate F̄ via Haar random sampling of jψi [56]. The
corresponding error is 1 − F̄. Optimizing the pulse
strengths and phases [56], we find a gate error of 18.5%

using ΩðcÞ
g =2π ¼ 1 MHz and ΩðtÞ

g =2π ¼ 47 kHz, approx-
imately half of which is due to dissipation. For the C8Z8

gate, ΩðtÞ
g is comparable to the smallest interspecies

interaction. This does not lead to large errors because
there are very few input states that have such small
blockade strengths, and typically multiple control atoms
will provide blockade. If the probability of small Vb is
significant, smaller Rabi frequencies should be used.
Although this increases the Rydberg dissipation probabil-
ity, fewer atoms are excited to a Rydberg state, and these

(a) (b)

FIG. 3. (a) Dressed interactions and (b) deviations from dressed
state basis 1 − jhψð∞ÞjψðrÞij2 ∝ r−6 for jψð∞Þi ¼ jcci; jtti;
j�i. States dressed are jsi ¼ jn ¼ 60; L ¼ 0; J ¼ 1=2;
mJ ¼ 1=2i, jp0i ¼ jn¼ 60;L¼ 1; J¼ 1=2;mJ ¼ 1=2i, jpþi ¼
jn ¼ 59; L ¼ 1; J ¼ 1=2; mJ ¼ −1=2i of 87Rb for θij ¼ π=2
using exact diagonalization in a Floquet basis with lattice
spacing a ¼ 5.5 μm. Dressing parameters are ðΩ0;Δ0;
Ωþ;ΔþÞ=2π ¼ ð−265;−223; 176; 200Þ MHz, where a negative
Rabi frequency indicates the importance of the relative phase of
the drives and determines the light shifts. The effects of coupling
to jp0

0i ¼ jn ¼ 60; L ¼ 1; J ¼ 3=2; mJ ¼ 1=2i, jp0þi ¼ jn ¼ 59;
L ¼ 1; J ¼ 3=2; mJ ¼ −1=2i, are also accounted for [56,63].

Interaction fits give CðctÞ
3 =2π ¼ −730 MHz μm3 and ðCðcÞ

6 ;

CðtÞ
6 ; CðþÞ

6 ; Cð−Þ
6 Þ=2π ¼ ð0.6;−1.8;−17;−64Þ GHz μm6 [64] and

jEc − Etj=2π ¼ 307 MHz. The lifetimes of jci and jti are τc ¼
431 μs and τt ¼ 356 μs, respectively [65].

PHYSICAL REVIEW LETTERS 127, 120501 (2021)

120501-4



partially balance each other. In general, the larger gates are
more suited to implementations where some information is
known about the typical Vb. If we consider a 3 × 3 lattice

using ΩðtÞ
g ¼ minVb=8, the C5Z4 gate and C4Z5 gate have

errors of 8.4% and 8.9%, respectively.
In the second scenario, we use these gates to create 13-

and 25-atom GHZ states using two or three steps, respec-
tively. This is achieved by using CkNOTm gates, which can
be realized by applying single-qubit Hadamard gates to the
target qubits before and after the CkZm gate. Initially, all
qubits in a square lattice are in j0i except for one, which
starts in ðj0i þ j1iÞ= ffiffiffi

2
p

. At each step, the boundary atoms
of the GHZ state are used as controls and their outer nearest
neighbors as targets [Fig. 1(b)]. The 13- and 25-atom GHZ
states have errors of 2.8% and 5.8% [56]. In comparison,
Ref. [45] predicts a 16% error for an 8-atom GHZ state via
asymmetric blockade. Although two-qubit gates with a
theoretical minimal error of 0.3% have comparable errors
(3.6% and 7.2%), they require 12 and 24 gates, respec-
tively, as well as much larger Rabi frequencies [2].
Outlook.—We have presented a protocol that uses

microwave-dressed Rydberg states to realize gates
involving multiple control qubits and multiple target
qubits. These gates can be used to simplify quantum
protocols, greatly reducing the number of gates needed.
While this reduces the need for fault-tolerant error
correction, understanding how to realize fault tolerance
for complicated multiqubit gates remains an important
direction [67,68]. Although we have considered only two
drives, these principles can be generalized to many
drives, e.g., using locally addressable optical drives to
realize local dressing [69], providing superior tunability.
Moreover, the application of strong microwave fields
provides a new approach to realizing novel, tunable
interactions for quantum simulation and could be used
for nondestructive cooling by engineering state-insensi-
tive interactions [70] or monitoring quantum simulators
with quantum nondemolition couplings [71]. Similarly, it
is worth exploring ways to realize multiqubit gates
beyond two-qubit generalizations. For example, more
general forms of controlled-unitary gates and controlled
Hamiltonian evolution, which has potential applications
in anyonic interferometry [72], measuring quantum
information scrambling [73], quantum phase estimation
[74], and quantum metrology with indefinite causal order
[75], and which also has close connections to the central
spin model [76]. Additionally, these methods have
potential applications in speeding up state transfer and
the preparation of multiscale entanglement renormaliza-
tion ansatz using the long-range 1=r3 interactions
[77,78]. Finally, the ideas presented in this Letter can
be applied to other systems with dipole-dipole inter-
actions, such as polar molecules [79–83], magnetic
atoms [84–86], and nitrogen-vacancy centers in diamond
[87,88].
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