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It is usually believed that coarse graining of quantum correlations leads to classical correlations in the
macroscopic limit. Such a principle, known as macroscopic locality, has been proved for correlations
arising from independent and identically distributed (IID) entangled pairs. In this Letter, we consider the
generic (non-IID) scenario. We find that the Hilbert space structure of quantum theory can be preserved in
the macroscopic limit. This leads directly to a Bell violation for coarse-grained collective measurements,
thus breaking the principle of macroscopic locality.
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Introduction.—Quantummechanics does not impose any
limit on the size of the system it describes, which can, in
principle, be as large as a cat [1]. However, quantum
behavior is not observed at the macroscopic scale, where
the world appears to be classical. The idea that quantum
mechanics must reproduce classical physics in the limit of
large quantum numbers is known as the correspondence
principle [2]. Yet, this principle, in all its generality, has not
been rigorously stated and proved, mostly because the
concept of “macroscopic” remains somewhat vague. While
different interpretations of the macroscopic limit may lead,
in general, to different conclusions, there is still confidence
that quantum behavior must somehow disappear in the
limit.
A possible explanation for the emergence of classicality

from quantum theory is via the coarse graining of the
measurements [3–10]. In this respect, one important con-
sequence of the correspondence principle is the concept of
macroscopic locality (ML) [6]: Coarse-grained quantum
correlations become local (in the sense of Bell [11]) in the
macroscopic limit. ML has been challenged in different
circumstances, both theoretically and experimentally [12–
19] (see Ref. [20] for a review). However, as far as we
know, nonlocality fades away under coarse graining when
the number of particles N in the system goes to infinity. In
this sense, ML was proposed by Navascués and
Wunderlich (NW) [6] as an axiom for discerning physical
postquantum theories. In particular, they considered a
bipartite Bell-type experiment where the parties measure
intensities with a resolution of the order of

ffiffiffiffi
N

p
or,

equivalently, Oð ffiffiffiffi
N

p Þ coarse graining. Then, under the
independent and identically distributed (IID) assumption,
i.e., under the premise that particles are entangled only by
independent and identically distributed pairs, they prove
ML for quantum theory.

In this Letter, we generalize the concept of ML to any
level of coarse graining α ∈ ½0; 1�, meaning that the
intensities are measured with a resolution of the order of
Nα. We drop the IID assumption, and we investigate the
existence of a boundary between quantum (nonlocal) and
classical (local) physics, identified by the minimum level of
coarse graining α required to restore locality. To do this, we
introduce the concept of macroscopic quantum behavior
(MQB), demanding that the Hilbert space structure, such as
the superposition principle, is preserved in the thermody-
namic limit. Then, we provide a concrete example of MQB
at α ¼ 1=2 which violates ML. This is the opposite of what
happens in the IID case, where ML is known to hold, as
shown by NW. Finally, we analyze the effects of noise and
particle losses, showing robustness of the macroscopic
statistics. Altogether, our findings shed new light on the
problem of the transition (if any) between quantum and
classical physics.
Experimental setup and macroscopic locality.—We

consider a simple Bell-type setting as illustrated in
Fig. 1. A state ρ½2N� of 2N particles is produced, out of

FIG. 1. Macroscopic Bell-type experiment. A source produces
a 2N-particle state and sends half of the particles to Alice and half
to Bob. The parties perform collective measurements on their
beams, specified by the settings ðp; qÞ. For each outcome, local
detectors count the number of particles with resolution of the
order of Nα.
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which N are sent to Alice and N to Bob. Alice performs a
collective measurement described by the (single-particle)
positive operator-valued measure (POVM) elements EA

ajp,
where a ∈ ΩA is her outcome and p ∈ ΣA is her measure-
ment setting (and similarly does Bob). Alice (Bob) has the
following limitations. (i) Intensity measurement: No access
to individual outcomes but only to their sum or intensity
IA ¼ P

N
i¼1 ai. (ii) OðNαÞ coarse graining: The measu-

ring scale for IA has a limited resolution of the order of Nα,
where α ∈ ½0; 1� is the order or level of coarse graining.
These assumptions naturally lead to the following

macroscopic variable:

X½N�
α ¼ 1

Nα

XN
i¼1

ðai − haiiÞ: ð1Þ

This quantity, with the mean set to zero, has well-studied
limit properties in the classical domain [21]. The special
case α ¼ 1=2 (also discussed here) is closely related to the

central limit theorem [22], for which X½N�
α¼1=2 properly

captures the quantum fluctuations of the intensity about
its mean [23]. The above macroscopic variable, in turn,
defines the POVM associated to it:

EðX½N�
α Þ ¼

X
P

N
i¼1

ðai−haiiÞ=Nα¼X½N�
α

EA
a1 ⊗ � � � ⊗ EA

aN : ð2Þ

Altogether, X½N�
α and EðX½N�

α Þ specify Alice’s measurement
and likewise holds for Bob. Finally, Alice and Bob repeat
their experiment many times in order to extract the bipartite
distribution. The central quantity of interest is the limit
thereof, namely,

Pðx; yÞ ¼ lim
N→∞

trρ½2N�EðX½N�
α Þ ⊗ EðY ½N�

α Þ; ð3Þ

where X½N�
α → x and Y ½N�

α → y denote convergence in
distribution. A necessary condition for convergence is that
the variance scaling of the measured intensity (as deter-
mined by the state ρ½2N�) matches the order of coarse
graining, i.e., that if the variance of the intensity VarðIÞ
scales as N2β, then α ¼ β. Otherwise, if α < β, the
distribution (3) will simply not converge, and if α > β,
the distribution will converge to a Dirac delta function, thus
giving trivial statistics.
The question of ML refers to the locality properties of the

limit distribution (3). We will say a theory possesses ML at
the order of α if the limit distributions Pðx; yÞ for any
choice of measurements can be described by a local model

Pðx; yÞ ¼
Z

dλμðλÞPAðxjλÞPBðyjλÞ:

On the other hand, if the above factorization does not hold,
we say that the theory exhibits macroscopically nonlocal

correlations (at the order of α). It seems natural to
conjecture the existence of a quantum-to-classical transi-
tion point, i.e., a critical value αc such that quantum theory
violates ML at any α < αc, while locality is restored for
α > αc. Note that, at α ¼ αc, both ML and violation of ML
are possible. Intuitively, we expect quantum theory to
violate ML at α ¼ 0 (no coarse graining) and to satisfy
it at α ¼ 1 (full coarse graining). Indeed, there are strong
evidences that this is the case, as presented in Refs. [17,24],
respectively. A more interesting result is that of NW. In
their paper, the authors consider the case of Oð ffiffiffiffi

N
p Þ coarse

graining (α ¼ 1=2) with IID states, described by a density
matrix of the form ρ½2N� ¼ ðρABÞ⊗N . Then, according to the
central limit theorem, the distributions of the macroscopic
variables (1) are Gaussian. Using this, they show that the
corresponding bipartite Gaussian distributions (3) are local,
implying that αIIDc ≤ 1=2. However, it is far from clear
whether actually αIIDc ¼ 1=2, and the possibility that even
αIIDc ¼ 0 is not discarded [16]. The IID assumption might
then be too restrictive. Our goal here is to drop it and
consider the most general scenario. In the next section, we
show how non-IID states at α ¼ 1=2 can give rise to non-
Gaussian distributions in the limit. This result will lead us
to full quantum behavior at α ¼ 1=2, for which we also
show violation of ML. Thus, we prove that αc ≥ 1=2 in the
general case (non-IID).
Non-IID states and non-Gaussian limit distributions.—

In the following, we will consider the case α ¼ 1=2 for a
single party, say, Alice, and a system of N spin-1=2
particles (qubits). For simplicity, we will consider projec-
tive (von Neumann) measurements, with E2

a ¼ Ea, for
which we choose binary outcomes a ¼ �1. It is useful
to define the (single-particle) observable A ¼ P

a aEa,
such that the macroscopic variable (1) is naturally pro-
moted to the macroscopic observable

X̂½N�
α¼1=2 ¼

1ffiffiffiffi
N

p
XN
i¼1

ðAi − hAiiÞ: ð4Þ

We consider an example of non-IID state, the W state

jWi ¼ 1ffiffiffiffi
N

p ðj100…0i þ j010…0i þ � � � þ j000…1iÞ:

The characteristic function of X̂½N�
α¼1=2 for this state can be

written in terms of A¼eitðA−hAiÞ=
ffiffiffi
N

p
as χðtÞ¼hWjA⊗N jWi.

Direct computation gives

χðtÞ ¼ AN−2
00 ½A11A00 þ ðN − 1ÞA10A01�;

where Aij ¼ hijAjji. Now, expanding A ¼ 1þ itðA −
hAiÞ= ffiffiffiffi

N
p

− t2ðA − hAiÞ2=N þOðN−3=2Þ and using that
hAi ¼ ð1 − 1=NÞA00 þ 1=NA11, the thermodynamic limit
reads χðtÞ ¼ e−σ

2t2=2ð1 − σ2t2Þ, where we have defined the

PHYSICAL REVIEW LETTERS 127, 120401 (2021)

120401-2



variance σ2 ¼ hA2i − hAi2. The Fourier transform of χðtÞ
gives the non-Gaussian limit distribution

PðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p x2

σ2
e−x

2=ð2σ2Þ:

Similarly, for any N-particle Dicke state [25]

jN; ki ¼ 1ffiffiffiffiffiffiffi
ðNkÞ

q ðj1…1|ffl{zffl}
k

0…0i þ permutationsÞ;

it has been shown in Ref. [26] that the limit distribution
of macroscopic observables of the form of Eq. (4) can
be written in terms of Hermite polynomials as PkðxÞ∼
e−x

2=2H2
kðxÞ. Thus, for such a family of states, we find non-

Gaussian limiting behavior, which is conventionally asso-
ciated to nonclassical phenomena. Moreover, such a dis-
tribution coincides with the Born rule for the distribution in
position of the kth excited state of the harmonic oscillator,
PðxÞ ¼ jhxjkij2, where the wave function is

hxjki ¼ 1

ð2πÞ1=4
1ffiffiffiffi
k!

p e−x
2=4HkðxÞ:

Here, HkðxÞ are the Hermite polynomials [27]

HkðxÞ ¼ ð−1Þkex2=2 dk

dxk
e−x

2=2:

Macroscopic quantum behavior.—The analysis pro-
vided above suggests the following limit mapping:

jN; ki !
N→∞

jki; X̂½N�
α¼1=2 !

N→∞
x̂; ð5Þ

where jki is the number basis of the harmonic oscillator and
x̂ is the position operator. The identification between Dicke
states and eigenstates of the harmonic oscillator is natural:
It is known that the SU(2) algebra of angular momentum
contracts to the Heisenberg algebra of creation and
annihilation operators in the limit of large total angular
momentum [28]. This is also related to the so-called
photon-spin mapping [29]. However, Eq. (5) is not just a
map of states but a joint map of states and observables. We
would like to formalize this idea and generalize it to general
POVM measurements and to any level of coarse graining.
We shall define a mapping that preserves the (separable)
Hilbert space structure of quantum theory, i.e., the super-
position principle as well as the Born rule. To achieve this,
let us introduce the concept of MQB in the following way.

Definition 1: LetHN be the Hilbert space ofN particles.
For every N ≥ N0, let MN

d ⊂ HN be a subspace of
fixed dimension d ≥ 2, and let M∞

d be an auxiliary d-
dimensional Hilbert space. Since these (sub)spaces are all d
dimensional, they are all isomorphic as vector spaces:

MN0

d ≅ MN0þ1
d ≅ MN0þ2

d ≅ � � � ≅ M∞
d :

Let us fix the sequence of isomorphisms by a choice of basis
in every space:

jkiN0
↦ jkiN0þ1 ↦ jkiN0þ2 ↦ � � � ↦ jki∞;

for every k ¼ 1;…; d. This gives a unique identification
among states jΨNi ¼

P
d
k¼1 ckjkiN ∈ MN

d for all N ≥ N0,
including jψi ¼ P

d
k¼1 ckjki∞ ∈ M∞

d . Now, we say that the
sequence of spaces MN

d , together with the corresponding
choice of bases (isomorphisms), possessesMQBat the order
of α if, for any jΨNi ∈ MN

d , we have

lim
N→∞

hΨN jEðX½N�
α ÞjΨNi ¼ hψ jeðxÞjψi ð6Þ

for all measurements specified by Eqs. (1) and (2). Here,

X½N�
α → x ∈ Ω, and eðxÞ is a POVM element acting inM∞

d ,
satisfying

P
x∈Ω eðxÞ ¼ 1.

This definition clearly ensures that both the Born rule
and the superposition principle remain valid in the macro-
scopic limit. In this case we write

jkiN↦
M jki; EðX½N�

α Þ↦M eðxÞ:

In order to fulfill the above definition, the macroscopic
variable as defined in Eq. (1) needs to be modified, as it
exhibits a nonlinear dependence on the input state via the
mean value haii. Such a behavior is inconsistent with the
Born rule, in general, and the simplest way to fix this is to
substitute this mean value by some constant μ, thus
redefining

X½N�
α ¼ 1

τNα

XN
i¼1

ðai − μÞ; ð7Þ

where the parameter τ is introduced for future convenience.

Such a modification of X½N�
α consequently induces a

modification of the POVM element EðX½N�
α Þ given in

Eq. (2). With this, we are ready to provide examples.
MQB at α ¼ 1=2.—We consider again Dicke states, i.e.,

the sequence of spaces MN ¼ SpanfjN; kigk together
with the identification jN; ki ↦ jN þ 1; ki, where k ¼
0; 1;…; d − 1 for some finite dwhich we leave unspecified
for now. We shall directly evaluate the limit (6). Given a
single-particle POVM with elements Ea, let us define the
matrix A ¼ P

a aEa. The explicit calculation of the dis-

tribution of X½N�
α¼1=2 on a state jΨNi ¼

P
k ckjN; ki is pro-

vided in Supplemental Material, Sec. A [30]. Choosing
μ ¼ A00 and τ ¼ jA01j for the macroscopic variable (7), the
limit distribution can be written as
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PðxÞ¼
X
k;l

e−ikφc�kcle
ilφ

Z
dx0

e−ðx−x0Þ2=2s2ffiffiffiffiffiffiffiffiffiffi
2πs2

p hkjx0ihx0jli; ð8Þ

where φ ¼ argð−A01Þ, s2 ¼ σ2=τ2 − 1 in terms of the limit
variance σ2 ¼ h0jPa a

2Eaj0i − h0jAj0i2, jxi is the posi-
tion basis, and jki is the number basis of the harmonic
oscillator. As we see, for the limit variable we get x ∈ R.
Therefore, the MQB at α ¼ 1=2 is given by

jN; ki↦M jki; EðX½N�
α¼1=2Þ↦

M
U†

φesðxÞUφ; ð9Þ

where Uφ ¼ eiφk̂, in terms of the number operator k̂ for the
harmonic oscillator, and esðxÞ is the Gaussian POVM
element

esðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πs2

p
Z

dx0e−ðx−x0Þ2=2s2 jx0ihx0j: ð10Þ

We see that the limit (auxiliary) space M∞
d is naturally

embedded in the infinite-dimensional space of the har-
monic oscillator. Since the dimension d is arbitrarily large,
we can freely set M∞

d to be the whole space of the harmo-
nic oscillator.
Let us now analyze in more detail the simple case of

projective measurements. For these, the values of σ and τ
coincide, so that s ¼ 0. Then esðxÞ becomes the pro-
jector on position jxihxj, and the observable X̂½N� ¼P

X½N� X½N�EðX½N�Þ becomes in the limit the phase-space
observable

U†
φx̂Uφ ¼ x̂ cosφþ p̂ sinφ; ð11Þ

depending on A only through the off-diagonal phase
φ ¼ argð−A01Þ. With this, one can see that the operators

X̂½N�
α¼1=2 form a noncommutative bosonic algebra in the

thermodynamic limit. This has been known in the context
of fluctuation observables [23,31]. From the perspective of
MQB, we obtain incompatibility of measurements along
with the superposition principle in the macroscopic limit.
This is a strong hint for violation of ML.
Violation of ML at α ¼ 1=2.—Now we consider again

the bipartite Bell scenario depicted in Fig. 1 and assume for
simplicity projective measurements. Let the source produce
a bipartite 2N-particle state of the form

jΨ2Ni ¼
X
k

ckjN; kiA ⊗ jN; kiB: ð12Þ

Let Alice measure the macroscopic observable X̂½N�
α¼1=2 with

settings p ∈ ΣA, and let Bob measure Ŷ ½N�
α¼1=2 with settings

q ∈ ΣB. Using the MQB (9) for both, these measurements
become phase-space observables (11) for different angles
φA and φB on a state

jψi ¼
X
k

ckjkiA ⊗ jkiB:

Such a system exhibits Bell nonlocality for a suitable
choice of the constants ck and phase-space measurements
[32] and can be easily generalized to the multipartite case.
In Supplemental Material, Sec. B [30], we show explicit
violation of the Clauser-Horne-Shimony-Holt inequality.
Robustness.—In this part, we will study robustness of

our MQB. We will analyze this robustness in two ways:
losses and noise at the microscopic level and global noise of
the order of

ffiffiffiffi
N

p
. First, we consider the case of losses,

where individual particles reach the detectors only with
some probability p ∈ ½0; 1�, and they are lost with prob-
ability 1 − p. If the parties are able to measure the number
of received particles (with a precision of the order of

ffiffiffiffi
N

p
),

then, as shown in Supplemental Material, Sec. C [30], this
loss simply translates into a rescaled variable x → x=p
together with σ2 → σ2=p. Rescaling back to the old
variable, we get an effective broadening of the limit
Gaussian POVM (10):

s2p ¼ σ2

p3τ2
− 1: ð13Þ

Similarly, independent single-particle noise channels
ρ½N� ↦ Γ⊗Nðρ½N�Þ can be absorbed in the single-particle
POVMs (see Supplemental Material, Sec. C [30]). Since
any POVM is mapped to the limit POVM U†

φesðxÞUφ

parametrized by s and φ, such noise channels can affect the
macroscopic statistics only in two simple ways: coherently,
by shifting the angle φ, or incoherently, by enlarging the
width s. In Supplemental Material, Sec. C [30], we provide
explicit calculations for the depolarizing and dephasing
channels, showing broadening effects as in Eq. (13).
Finally, we consider the measurement precision (both of
the intensity and of the number of particles) to be captured
by some classical independent noise bounded by τϵ

ffiffiffiffi
N

p
for

some constant ϵ. This simply translates into an additive
classical random variable r bounded by ϵ, so that the
random variable in the MQB (9) becomes

X½N�
α¼1=2 → xþ r: ð14Þ

Altogether, this shows that our MQB is robust. In principle,
the macroscopic Bell violation should still be observable
for small enough values of the global noise ϵ and of the
effective parameter s capturing noise and losses at the
microscopic level.
MQB at α ¼ 1.—We close with a final example of MQB

for α ¼ 1 (maximal coarse graining) with 2N-particle
Dicke states j2N;N þ ki. As before, we have A ¼P

a aEa and choose μ ¼ 1
2
trA and τ ¼ jA01j for the macro-

scopic variable (7). In Supplemental Material, Sec. D [30],
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we compute the limit distribution PðxÞ of the variable X½2N�
α¼1

on a superposition state jΨ2Ni ¼
P

k ckj2N;N þ ki. This
distribution has a finite support x ∈ ½−1; 1�, as opposed to
the case α ¼ 1=2, where we had x ∈ R. It is therefore
convenient to set x ¼ cos θ, with θ ∈ ½0; π�, so that the
distribution can be written as

PðθÞ ¼
X
k;l

e−ikφc�kcle
ilφ e

−iðk−lÞθ þ eiðk−lÞθ

2π
; ð15Þ

where φ ¼ argðA01Þ. Then, the sequence of spacesM2N ¼
Spanfj2N;N þ kigk together with the identification
j2N;N þ ki ↦ j2ðN þ 1Þ; N þ 1þ ki has MQB at
α ¼ 1 given by

j2N;N þ ki↦M jki; EðX½2N�
α¼1Þ↦

M
U†

φeðxÞUφ:

Here, jki is the eigenbasis of the quantum rotor [33], with
wave functions

h�θjki ¼ 1ffiffiffiffiffiffi
2π

p e�ikθ; θ ∈ ½0; π�;

Uφ ¼ eiφk̂, and eðθÞ ¼ jθihθj þ j − θih−θj. Despite

the MQB, the POVMs U†
φeðxÞUφ ¼ jθ − φihθ − φj þ

j−θ − φih−θ − φj are compatible for all φ. Given this
measurement compatibility, we can construct a joint dis-
tribution for all settings, thus restoring classicality and Bell
locality. In Supplemental Material, Sec. D [30], we explic-
itly provide a local model for the bipartite distributions
arising from this MQB.
Conclusions.—In this Letter, we have introduced a

generalized concept of macroscopic locality at any level
of coarse graining α ∈ ½0; 1�. We have investigated the
existence of a critical value αc that marks the quantum-to-
classical transition. We have introduced the concept of
MQB at level α of coarse graining, which implies that the
Hilbert space structure of quantum mechanics is preserved
in the thermodynamic limit. This facilitates the study of
macroscopic quantum correlations. By means of a parti-
cular MQB at α ¼ 1=2, we show that αc ≥ 1=2, as opposed
to the IID case, for which αIIDc ≤ 1=2. An upper bound on
αc is, however, lacking in the general case. The possi-
bility that no such transition exists remains open, and
perhaps there exist systems for which ML is violated
at α ¼ 1.
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