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Predicting the densest random disc packing fraction is an unsolved paradigm problem relevant to a
number of disciplines and technologies. One difficulty is that it is ill defined without setting a criterion for
the disorder. Another is that the density depends on the packing protocol and the multitude of possible
protocol parameters has so far hindered a general solution. A new approach is proposed here. After
formulating a well-posed form of the general protocol-independent problem for planar packings of discs, a
systematic criterion is proposed to avoid crystalline hexagonal order as well as further topological order.
The highest possible random packing fraction is then derived exactly: ϕRCP ¼ 0.852 525…. The solution is
based on the cell order distribution that is shown to (i) yield directly the packing fraction; (ii) parametrize all
possible packing protocols; (iii) make it possible to define and limit all topological disorder. The method is
further useful for predicting the highest packing fraction in specific protocols, which is illustrated for a
family of simply sheared packings that generate maximum-entropy cell order distributions.
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Understanding how particles pack is a centuries-old
problem relevant to a range of applications [1]. Of
particular importance is the ability to predict the highest
packing fraction (PF) of disordered assemblies. Since the
PF depends on the size and shape distributions of the
particles, packing of identical frictionless spheres in three
dimensions and discs in two have become paradigm
problems, whose solutions could pave the way to solving
more general cases.
A proper solution is hindered mainly by the absence of a

consensus on, and a criterion of, what is acceptable as
“random” [2]. In particular, same-size spheres and discs tend
to form crystalline regions, which increase the mean PF, and
a criterion for the largest allowed such regions is required.
Moreover, as discussed below, other forms of topological
order also need to be avoided, an issue largely neglected in
the literature. A recent proposal to address the disorder issue
by defining randomness in terms of an order parameter,
whose minimum is at a conceptually most random state [2],
is an attempt in the right direction, but is problematic
because the choice of the order parameter is not unique.
Another potential difficulty is that different packing

protocols give rise to different PFs. For example, piling
particles slowly by deposition yields PFs that depend on the
deposition flux [3] and the PFs of shaken granular systems
depend on the shaking frequency and amplitude [4].
Protocols cover a wide range of parameters, many of
which can be varied continuously, and therefore exist in
an infinite-dimensional parameter space. It then seems
impossible to construct a solution that could hold for all
possible protocols.
Focusing on same-size frictionless discs in the plane, a

well-posed version of the problem is, “what is the highest

possible PF out of all possible protocols?” Several ana-
lytical models have been proposed, predicting PF values
that range from 0.81 to 0.89 [5–12]. Numerical and
experimental measurements unavoidably resort to specific
protocols and report, on average, lower values than the
analytical models [13–18]. Whether analytical, numerical,
or experimental, underlying all works is an explicit or
implicit criterion for the level of disorder.
Here, I show that both the infinite-parameter space and

the disorder criterion difficulties are removable for the disc
problem by using the cell order distribution (COD), defined
as follows. The lines joining the centers of discs in contact
are the edges of a graph whose nodes are the disc centers.
The graph’s smallest (also known as irreducible) loops are
the cells. A cell’s order, k, is the number of discs (or nodes)
surrounding it. Henceforth, such a cell is called k-cell. The
COD is the fraction of k-cells, Qk > 0 for k ¼ 3; 4;…; C
(Qk>C ≡ 0) and it has been shown to be spatially uncorre-
lated [19]. The COD is key to the solution presented here
because, as shown below: (i) it determines uniquely the PF,
(ii) it can be used to parametrize all possible protocols,
(iii) it can be used to specify the maximum allowed amount
of order, (iv) when packing protocols produce large cells,
the highest PF is achieved when the COD’s entropy is
maximal.
The solution of the packing problem is constructed as

follows. First, the COD is used to determine the PF. The use
of the COD to parametrize all possible protocols is then
discussed. Next, the definition of order is discussed and I
argue that order goes beyond the conventional hexagonal
lattice and must be extended to topological order. This
discussion forms the basis for a disorder criterion. Using
this criterion, the highest possible random close PF, ϕRCP is
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then derived. Going beyond this general solution, it is
shown that this approach can be used to determine the
highest PF for any specific protocol and that this PF
coincides with the maximum-entropy COD.
I consider packings of N unit-diameter frictionless rigid

discs, confined under vanishingly small compressive
boundary stresses and presumed mechanically stable. N
is sufficiently large to neglect boundary effects and all
the discs transmit vanishingly weak forces, which excludes
rattlers [20]. A further reason for the condition on
the boundary stresses will become clear later. The PF is
the ratio of the area occupied by all the discs, Nπ=4, to the
total area, which is the sum of the areas of all the polygonal
cells,

Stotal ¼ Nc

XC

k¼3

QkS̄k; ð1Þ

withNc the total number of cells and S̄k the mean area of all
the possible k-cell configurations. The PF is then

ϕ ¼ π

4
P

C
k¼3QkS̄k

N
Nc

¼ πðk̄ − 2Þ
8
P

C
k¼3QkS̄k

: ð2Þ

In (2), k̄ is the mean cell order and the relation N=Nc ¼
ðk̄ − 2Þ=2 has been used, which is derived from Euler’s
relation, as shown in [21]. S̄3 ¼

ffiffiffi
3

p
=4 is straightforward to

calculate.
Cell shapes for k > 3 are determined by k − 3 internal

angles, as exemplified in Fig. 1 for 4- and 5-cells—the
former depend on one angle, π=6 ≤ θ ≤ π=3, and the latter
on two, θ1 and θ2. As discussed later, the highest PF is
achieved for maximum cell entropy, which implies a
uniform distribution of the internal angles. For 4-cells,
this means that PðθÞ ¼ 6=π and, using S4ðθÞ ¼ sin 2θ,
yields

S̄4 ¼
6

π

Z
π=3

π=6
sin 2θdθ ¼ 3

π
: ð3Þ

The area of any 5-cell is

S5ðθ1; θ2Þ ¼
sin 2θ1 þ sin 2θ2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðsin2 θ1 þ sin2 θ2Þ − 16ðsin2 θ1 − sin2 θ2Þ2 − 1

p

4
: ð4Þ

Averaging over θ1 and θ2 is not straightforward because
their ranges are interdependent: π=6 ≤ θ1 ≤ π=2 and

π

2
≥ θ2 ≥

1

2
arccos

�
3

4
þ 1

2
cos 2θ1

�
≡ θ2;min: ð5Þ

Taking the angle distribution again to be uniform for
maximizing the entropy, S̄5 can be calculated numerically:

S̄5 ¼
R π=2
π=6 ½

R π=2
θ2;min

S5dθ2�dθ1
R π=2
π=6

R π=2
θ2;min

dθ2dθ1
¼ 1.548 154 4:… ð6Þ

Calculating S̄k gets increasingly cumbersome for k > 5.
However, it is clear that the higher the fractions of low-
order cells the denser the packing and, therefore, calcu-
lations of S̄k>5 are not essential to solve for ϕRCP.

Nevertheless, these are required for calculating the highest
PF for specific protocols that generate CODs containing
high-order cells.
The use of the COD also alleviates the infinite protocol

parameter space problem—any protocol can be classified
by the COD it produces. This reduces the protocols
parameter space to only one distribution, QkðCÞ. The
general packing problem then translates to finding the
COD that gives rise to the highest random PF and the PF’s
value. Thus posed, it does not matter that several protocols
may give rise to the same COD.
Next, we need a disorder criterion. It is common to

regard order in such packings as the occurrence of clusters
of hexagonal lattices, i.e., of 3-cells. However, largely
ignored in the literature is that packings may also contain
topological order, whose disruption is the highest con-
tributor to packings entropy [22]. A pertinent example is
the deformed square lattice, which is geometrically dis-
ordered but topologically ordered. Ignoring this type of
order leads to misleadingly high PFs, as demonstrated
below. The COD is further useful for limiting topological
order to any desirable level because, in some systems, the
conditional distribution ofQk around a cell of any order,m,
is independent of m [19,23]. Therefore, in those systems,
the probability to find a k-cell, with two or more other k-
cells neighboring it, is

Rkk ¼ Qk½1 − ð1 −QkÞk − kQkð1 −QkÞk−1�: ð7Þ

(a)

2θ
2θ1

2θ2

(b)

FIG. 1. The shape of a k-cell depends on k − 3 internal angles,
illustrated for a 4-cell in (a) and for a 5-cell in (b).
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The criterion can now be set to Rkk < 1=k, i.e., typically a
k-cell has fewer than one k-cell neighbor, This leads to k-
cell clusters occurrence probability that decays exponen-
tially with size. For example, when R33 < 1=3, the prob-
ability of 3-cell crystalline clusters of size L is
< QL

3 ð1 −Q3ÞLþ2 ∼ e−j ln ½Qkð1−QkÞ�jL for L < 6. The prob-
ability of larger clusters continues decaying with L, albeit at
slower exponential rates. This criterion is also conveniently
independent of C. A more general criterion could be
Rkk ≤ α=k, with α chosen at will. However, the choice α ¼
1 is optimal, as discussed in the concluding section.
All the ingredients are now in place to solve the random

packing problem. The following numerical values
are exact and can be derived to arbitrary accuracy, but
are shown to six decimal accuracy, for brevity. Using the
criterion R33 < 1=3 yields the highest allowed value
of Q3, Qmax

3 ¼ 0.562 236. Consider, first, the densest
possible packing of only 3- and 4-cells, in which
Q4 ¼ 1 −Qmax

3 ¼ 0.437 764, yielding k̄ ¼ 3.437 764.
Using (2) with C ¼ 4, gives ϕ ¼ 0.853 542. This is the
highest possible PF for packings with no hexagonal order.
However, this Q4 yields R44 ¼ 0.257 783 > 1=4, which
means that there is a high probability of large clusters of 4-
cells. These are deformed square lattice regions and are,
therefore, topologically ordered. Thus, packings of
only 3- and 4-cells contain only regions that are ordered
either one way or another and are not truly disordered;
disordered packings must include 5-cells. This means
that ϕRCP < 0.853 542.
Using (7), the highest fraction of 4-cells satisfying

R44 < 1=4 is Qmax
4 ¼ 0.431 815. The densest packing is

Q3¼Qmax
3 ;Q4¼Qmax

4 ;Q5¼1−Qmax
3 −Qmax

4 ¼0.005948.
Using (7) again, R55 < 2.08 × 10−6, which is conveniently
small. In this packing, k̄ ¼ 3.443 712 and, using (2),
ϕ ¼ 0.852 525. This value is the highest PF possible in
a truly disordered 2D packing, given the above disorder
criterion, and is the solution to the random packing
problem, ϕRCP ¼ 0.852 525.
Whether or not there exist protocols that generate this

ideal COD is an open question. Since experiments and
numerical simulations must resort to particular protocols,
this method can be used to derive the highest PF for those
protocols. For example, applying simple quasistatic shear
to the discs assembly, with specific boundary stress and
shear rate, produces a specific COD, but varying those and
the interparticle friction gives rise to a family of CODs.
Suppose a subset of these CODs are disordered, i.e., the
disorder criteria for R33, R44, and R66 (which are the
only k-cells that can order topologically) are satisfied. Then
the highest random close PF, which this protocol can
achieve, can be found by using Eqs. (1) and (2) to identify
the densest COD and hence the densest member of this
family.
Before continuing, the effect of rattlers has to be

discussed. Rattlers are discs that occupy area, but do not

participate in the force-carrying skeleton, and the definition
of the PF depends on whether or not this area is taken into
account. In the following, rattlers are excluded from the
calculations, but including them, which increases the PF, is
straightforward.
To illustrate the procedure, consider a quasistatic cyclic

shearing of the discs in the plane. The COD generated by
this process can be modulated by the interparticle friction
and the confining pressure and it has been shown to yield
maximum-entropy CODs [19] and cell configurations,
subject to the constraint of mechanical stability. The
stability constraint eliminates unstable long and tortuous
cells [19,24]. In any particular subset of k-cells, the higher
the fraction of long cells the lower their mean area-to-
perimeter ratio and the lower the value of S̄k. From Eq. (2),
this means that such cells increase the value of ϕ. The
conclusion is that the highest PF in any physical protocol
corresponds to the maximum-entropy COD, when the
effect of mechanical stability is minimal. The effect of
mechanical stability can be minimised by reducing the
compressive boundary loads to minimum and increasing
interparticle friction [19]. This is the reason that the
packing problem has been posed initially with vanishingly
small compressive boundary loads.
The maximum-entropy CODs, generated by the

cyclic shear experiments in [19] are exponential, as shown
in [21],

Qk ¼ Ae−λk; ð8Þ

with A ¼ e3λð1 − e−λÞ=½1 − e−λðC−2Þ� and λ only a
function of k̄. The densest disordered packing corresponds
to C ¼ 5. Combining (8) with the requirement Q3 ¼
Qmax

3 ¼ 0.562 235, fixes the COD, as shown in [21]:
Q4 ¼ 0.289 105 and Q5 ¼ 0.148 660. These yield k̄ ¼
3.586 424 and, using (2) with C ¼ 5, yields

ϕcs ¼
πðk̄ − 2Þ

8ðQ3S̄3 þQ4S̄4 þQ5S̄5Þ
¼ 0.831 007: ð9Þ

This is the densest possible packing that such shearing
protocols can produce. Unsurprisingly, ϕcs < ϕRCP.
Protocols that generate higher cell orders, C > 5 would,
unavoidably, yield lower PFs.
To conclude, the highest possible PF has been derived

analytically for a planar packing of discs under the
condition that the packing is disordered geometrically
and topologically. Central to the method is the cell order
distribution, which makes possible: (i) direct calculation of
the PF, (ii) parametrization of all possible packing proto-
cols, and (iii) a quantitative criterion for the disorder. The
criterion, Rkk ≤ 1=k for k ¼ 3 and 4, has been chosen to
ensure that the occurrence probability of regions of
hexagonal and deformed square lattice decay exponentially
with size. By determining the COD that corresponds to the
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densest possible disordered packing, the global random
close packing has been found, ϕRCP ¼ 0.852 525:…
Limiting only hexagonal order and allowing in topological
order, in the form of deformed square lattices, can increase
the ϕRCP to 0.853 542, but the contention here is that such
packings are not truly disordered. This means that calcu-
lations, simulations and physical experiments yielding
higher PFs must include considerable ordered regions. In
particular, predictions of ϕRCP ¼ 0.89 [9,12] mean that
Q3 ≥ 0.898 091, R33 > 0.872, and large hexagonal clusters
must occur. Whether or not there exists a physical or
numerical protocol that can produce the COD that gives rise
to ϕRCP remains an open question, not the least because one
of its objectives would be to avoid ordering.
The importance of a clear criterion for the disorder

cannot be overemphasized. The criterion chosen here can
be generalized to Rkk ≤ α=k for k ¼ 3 and 4. As can be
seen in Fig. 2, increasing α increases the highest PF, but this
lets in more order. Three arguments motivate the choice
α ¼ 1. (i) α > 1means that, on average, a cell typically has
more than one same-order neighbor. As a result, the
occurrence probability of ordered clusters decay slowly
with size already for relatively small sizes. (ii) Increasing α
reduces the fraction of 5-cells, Q5, and it vanishes beyond
1.0 < αc < 1.1 (see Fig. 2). As discussed, such packings
are, unavoidably, topologically ordered, namely, α must be
smaller than αc. (iii) While reducing α below 1 reduces
further the occurrence probability of ordered clusters, this
improvement is negligible and it comes at the cost of
reducing the highest PF.
The method can be used for any specific protocol

producing a family of CODs. This was illustrated for
experiments of cyclic shear at low confining stress that give
rise to maximum-entropy CODs [19]. The highest PF that

such an experiment can produce has been found to
be ϕ ¼ 0.831 006.
Other uses of the method are possible. One is for

determining the highest PFs of packings whose mean
coordination number is known or constrained. This infor-
mation must be accompanied by knowledge of the highest
possible cell orderC. The procedure is the following: (i) use
Eq. (4) in the Supplemental Material [21] to calculate the
mean order, k̄; (ii) derive the corresponding maximum-
entropy COD corresponding to it, using the procedure
leading to Eq. (8); (iii) determine the mean area of
each cell order, S̄k, up toC (this is the most computationally
intensive step); (iv) using Eq. (2), calculate the
highest PF.
Another application is to finding the highest PFs of

bidisperse disc systems, which are commonly used to avoid
order. This would involve the statistics of the k-cell
configurations and their areas and should probably resort
to numerical computations.
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