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Bacterial swarms display intriguing dynamical states like active turbulence. Now, using a hydrodynamic
model, we show that such dense active suspensions manifest superdiffusion, via Lévy walks, which
masquerades as a crossover from ballistic to diffusive scaling in measurements of mean-squared
displacements, and is tied to the emergence of hitherto undetected oscillatory streaks in the flow. Thus,
while laying the theoretical framework of an emergent advantageous strategy in the collective behavior of
microorganisms, our Letter underlines the essential differences between active and inertial turbulence.
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Flowing active matter, resulting from the motility of
organisms, cells, and particles, forms an intriguing class of
nonequilibrium phenomena [1–3]. Biological functions
like foraging and evasion, that require active agents to
both sample their neighborhoods and make large jumps to
cover ground, become inextricably coupled with collective
flow patterns in dense systems [4]. Active flow driven
enhanced diffusion and mixing are also essential for
feeding of microorganisms [5–7]. Active agents, hence,
profit from optimal processes like Lévy motion [8–10]
characterized by long-tailed, self-similar step-size distri-
butions leading to anomalous diffusion [11] and increased
encounter rates [12]—all of which can emerge from simple
generative mechanisms [13]—as opposed to inefficient
meandering by random walks limited to classical diffusion.
Interestingly, the motion of individual active entities in
isolation often differs from when they are in large numbers
[14]: Movements of a single swimming bacterium can be
fundamentally different from the motion in a dense, fluid-
like swarm [15].
A remarkable feature of the collective behavior of

dense active suspensions is the emergence of spatiotem-
poral structures strongly reminiscent of inertial turbulence
[16–21]: Such two-dimensional suspensions are vortical
[22], chaotic [17] with non-Gaussian distributions of
velocity gradients [22–24], and a power-law kinetic energy
spectrum [25,26]. These facets of low Reynolds number
suspensions have led to a new class of phenomena known
as “active turbulence” [27].
However, does the similarity between high Reynolds

number inertial turbulence and low Reynolds number
active turbulence hold even for Lagrangian statistics?
This is a fundamentally important question for two reasons.
First, while for inertial turbulence, Lagrangian (tracer)
trajectories, measured through mean-squared displace-
ments (MSDs) have a universal behavior of purely diffusive
self-separation [28], experiments in active turbulence

suggest nonuniversal signatures of Lévy walks and anoma-
lous diffusion [15,29–31]. Second, if such effective bio-
logical strategies emerge in active suspensions, why have
they remained theoretically undetected and experimentally
inconclusive so far?
Using a continuum hydrodynamic model, now, we

provide definitive answers to these questions. We show
what appears as an inconsequential transition [see Fig. 1(a)]
between the ballistic and diffusive scaling regimes in MSD
measurements is really an intermediate, anomalous
diffusive regime leveraging the crucial biological advan-
tages of Lévy walks [32]. Thus, while low Reynolds
number active suspensions may well share features, at
the level of equations and the resultant dynamics, with high
Reynolds number inertial turbulence, active turbulence still
allows for emergent behavior consistent with biological
systems striving for efficient searching strategies. This, we
discover, is facilitated by a synthesis of two basic flow
patterns: Novel oscillatory “streaks” responsible for
anomalous diffusion and unique to such systems, and
vortical features reminiscent of inertial turbulence.
Dense, active suspensions lend themselves to a gener-

alized hydrodynamic description, developed for bacterial
swarms [17,36]

∂tuþ λu ·∇u¼ −∇p− Γ0∇2u− Γ2∇4u− ðαþ βjuj2Þu;
ð1Þ

where the incompressible velocity field uðx; tÞ (with
∇ · u ¼ 0), is a coarse-grained description of the motility
of dense, active (bacterial) suspensions. Here, λ > 0 corres-
ponds to pusher-type bacteria and the Γ terms are respon-
sible for quasichaotic pattern formation via stress-induced
instabilities (when Γ0;Γ2 > 0) in the bacterial system
[17,25,37–39]. The last term adds Toner-Tu drive
[40,41], where β needs to be positive for stability, while
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the activity α can take both positive (Ekman friction) and
negative (active injection) values. In our direct numerical
simulations [33], Γ0 and Γ2 are fixed according to exper-
imental length and time scales [17], while other parameters
are varied to obtain the flow fields explored in this Letter
[33]. The characteristic length and time scales associated
with the linear instability in (1) are LΓ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

Γ2=Γ0

p

and τΓ ¼
Γ2=Γ2

0 [17], while the activity length and time scales are
given by 1=

ffiffiffiffiffiffiffiffijαjβp

and 1=jαj, respectively. In conformity
with the previous studies using this model, we present our
results in simulation units.
Figure 1(a) shows the MSD Δx2 ¼ hkxðtÞ − xð0Þk2i

(where k · k and h·i denote the Euclidean norm and
ensemble averaging over all particles, respectively) for
an active suspension with α ¼ −1.0. This scaling behavior
seems consistent with inertial turbulence: A ballistic regime
Δx2 ∼ t2 crossing over to a diffusive regime Δx2 ∼ t [42].
Individual trajectories [upper inset, Fig. 1(a)], similarly,
show diffusive meandering.
However, some experiments [15,29] on dense bacterial

swarms provide strong evidence of anomalous diffusion
Δx2 ∼ tξ, with 1 < ξ < 2. This raises the question whether
what is seen as a crossover from ballistic to diffusive
behavior is actually masking an intermediate, anomalous
diffusive regime.
To uncover the true behavior of such suspensions, we

perform several simulations [33] on domain sizes 20 ≤
L ≤ 80 with −6 ≤ α ≤ 4, seeded with tracers that evolve as
dxðtÞ=dt ¼ uðx; tÞ, and measure the associated MSDs as
shown in Fig. 1(b). For α ≥ 0, corresponding to an Ekman
friction effect, and for modest activity −2 ≤ α < 0 (cases

A–E), we see little evidence of anomalous diffusion.
However, as we increase the activity further (case F), the
first signatures of an intermediate regime appear. This
observation is validated for case G where the Δx2
shows a convincing superdiffusive regime, and local slope
analysis [Fig. 1(b), inset] gives ξ ¼ ðdLogΔx2=dLogtÞ ¼
1.31� 0.08 ≈ 4=3, for close to two decades before giving
way to diffusion. This scaling, we recall, is not inconsistent
with recent experimental measurements [15,29] and sim-
plified model predictions [43,44] which suggest similar
superdiffusion for dense suspensions of motile bacteria. It
is important to alert the reader that whether these are,
indeed, nontrivial fixed points in the renormalization group
sense would require an exponent flow [45] or more
sophisticated data analysis through asymptotic extrapola-
tion [46–49]; given the high precision data required for
such approaches to be beyond speculative, we refrain from
this analysis here.
The emergence of anomalous diffusion, as suspensions

become more active, ought to carry its signature in
Lagrangian trajectories, providing a crucial link in under-
standing how bacterial colonies forage and avoid hostile
environments. In Fig. 1(c), we show a representative
trajectory of a tracer corresponding to a highly active
suspension with α ¼ −6 which, in sharp contrast to trajec-
tories in mildly active suspensions [Fig. 1(a), upper inset],
shows short diffusive behavior punctuated by long “steps”
indicative of anomalous diffusion. This is clearly illustrated
in the movies of trajectories for different activities [33].
Figure 1(c) shows a trajectory divided into segments

(shown in different colors), that are identified every time
the trajectory turns (points marked in black) by an angle θ

FIG. 1. MSDs of Lagrangian trajectories (a) for mild activity and (b) with increasing levels of activity (vertically staggered for clarity).
Local slopes [(b), inset] ofΔx2: While ξ continuously decreases from 2 to 1 for α ≤ −4, it plateaus (between the vertical lines) at ξ ≈ 4=3
for α ¼ −6. Representative trajectories for (a) α ¼ −1 (upper inset) and (c) α ¼ −6 (see text) reflecting the change from diffusive to
anomalous behavior and, also, seen in snapshots of particle positions (initially localized within the small white disk) at t ≈ 10 for α ¼ −1
[panel (a), lower inset] and (d) α ¼ −6; the brightness of the colors reflects the particle density (see movie in the Supplemental
Material [33]).
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greater than a threshold angle θc; we choose θc ¼ 30° for
illustration in Fig. 1(c). While trajectories evolve mostly
with small variations in θ for mild suspensions, increasing
activity makes sharper turns more probable [33].
The changing nature of particle trajectories and transition

from normal to anomalous diffusion is also reflected in the
spreading of an initially localized puff of particles [33]. In
Fig. 1(d), we show a snapshot of 20 000 particles, initially
localized within the small white disk at the center, at time
t ≈ 10 for case G (α ¼ −6); the brightness of the colors is a
measure of the local density of particles. The evolution of
the puff in highly active suspensions is far more “irregular”
than what is seen, under identical conditions, at low activity
[α ¼ −1, Fig. 1(a), lower inset] where they spread through
diffusion [33].
This inevitably leads to the question whether these visual

cues are stemming from real Lévy walks, marked by
power-law step size and, equivalently, because of an
approximately constant velocity, waiting time distributions
[50]. A convincing argument in favor of Lévy walks is the
distribution pðτÞ of waiting times τ, which ought to show a
significant range of scaling of the form pðτÞ ∼ τ−γ−1 for a
reasonably large spread in the choice of the threshold angle
θc which determines a “turn.” Figure 2 confirms the
existence of such a power law, and a local slope analysis
γ ¼ −1 − ½dLogpðτÞ=dLogτ� (Fig. 2, lower inset) shows
scaling for about a decade with γ ¼ 1.7� 0.3. Similarly,
the probability distribution pðdÞ of step sizes, for the more

active suspensions, follow a scaling pðdÞ ∼ d−γ−1. Hence,
in the same inset, we also show local slopes obtained from
pðdÞ (with the x axis rescaled to d=5 for ease of compari-
son), showing a comparable extent of scaling, from which
we obtain γ ¼ 1.6� 0.2. Importantly, this scaling exponent
γ ≈ 5=3, when coupled with the anomalous MSD exponent
ξ ≈ 4=3, satisfies the Lévy walk constraint γ þ ξ ¼ 3 [51].
Finally, the joint distribution of flight lengths d and waiting
times τ between turns in the trajectories for active suspen-
sions (Fig. 2, upper inset) shows an almost linear scaling
reflecting a constant system velocity. All of these are clear,
unambiguous indicators of Lévy walks [52].
Does the emergence of (Lagrangian) anomalous scaling

carry telltale signs in the vorticity field ω ¼ ∇ × u?
Figure 3 (see Ref. [33] for movies of evolving fields)
shows slices of the vorticity field, for cases D and G. While
the vorticity fields appear, overall, disorganized—active
turbulence—a closer inspection reveals a pattern hitherto
undetected. With increasing activity, the dense packing of
diffused vortices [33], which mainly appear as spots, gives
way to sharper spots with trailing wisps of vorticity streaks
(case D). For highly active suspensions (case G), there is an
equal preponderance of spots and streaks. Curiously, these
streaks appear with alternating signs in a periodic fashion
with a characteristic length scale δ.
The probability distribution of vorticity pðωÞ is non-

Gaussian (similarly to inertial turbulence) with fat tails
which fall off as a power law, becoming more pronounced
with increasing activity [33]. This analogy with inertial
turbulence extends to the energy spectrum scaling as k−5=3

scaling at high activity [33,55,56].
Is there a causal link between the alternating streaks and

the anomalous diffusion that we observe? Careful measure-
ments certainly suggest so. While a definitive answer is
beyond the scope of this Letter, the instantaneous, jetlike
velocity and elongated streamlines, orthogonal to the streaks,

FIG. 2. For highly active suspensions (case G), probability
distributions pðτÞ of the waiting time τ with a τ−8=3 scaling
(dashed line), as a guide to the eye, for different θc [33]. (Lower
inset) Local slope analysis of pðτÞ and pðdÞ (x axis rescaled for
visualization) yields γ ¼ 1.7� 0.3 and γ ¼ 1.6� 0.2, respec-
tively, consistent with Lévy walk estimates, showing a scaling
range (between dashed [pðτÞ] and dotted [pðdÞ] vertical lines) for
about a decade. (Upper inset) Joint probability distribution of d
and τ confirming a finite velocity through the near linear
relationship between the two.

FIG. 3. Representative snapshots of vorticity fields (and their
magnified sections with velocity vectors as arrows and instanta-
neous streamlines as solid lines) for (a) case D (α ¼ −1), and
(b) case G (α ¼ −6). In the latter, highly active suspensions, a
new feature shows up: The vorticity field is now populated by
oscillatory streaks (see, also, Fig. 4 and Ref. [33]).
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(Fig. 3 insets) would, in the absence of dynamics, ensure the
persistence of trajectories, often over lengths OðL=2Þ [con-
sistent with the scaling extent in pðdÞ], while the vortical
patches serve to reorient trajectories. Naively, this suggests
streak regions as origins of anomalous diffusion, while their
absence (low activity) leads to classical diffusion.
Importantly, these streaks are distinct from the “laning”
phenomena in some active suspensions [57]. In order to
further test the role of streaks, we push the system to an
extreme case (with α ¼ −16.66 and β ¼ 22.22), which
shows that the emergence of more distinct, pattern forming
streaks [Fig. 4(a), with a magnified view in panel (b)] is
accompanied by a robust superdiffusive Δx2 ∼ t4=3 regime
[Fig. 4(c)]. Unsurprisingly, the trajectories reflect this
anomalous diffusion through clear Lévy walks [see inset
in Fig. 4(c)], and are also found to have power-law
distributions of d and τ. Thus, we show that active systems
are actually superdiffusive, and what may be mistaken as a
crossover from ballistic to diffusive behavior masks the most
important and nontrivial aspects of such systems.
While the origin of the oscillatory streaks remains to be

established, it seems reasonable to assume that the length
scale δ, determining the alternating pattern of streaks, is
influenced by the activity which sets the characteristic
velocity for global polar ordering v0 ¼

ffiffiffiffiffiffiffiffiffiffiffijαj=βp

[17]. Since
the dominant timescale is set by activity, δ ≃ 1=

ffiffiffiffiffiffiffiffijαjβp

.
Given the heuristic nature of this argument, we made
careful measurements of the “wavelength” of the oscilla-
tions for a range of parameters and found that they are in
reasonable agreement with our conjectured estimate. Why
the system senses this length scale will, perhaps, be found
when the origins of these oscillatory streaks are system-
atically known, and the question of universality (or not) of
such oscillatory patterns for different classes of active

systems is an important one. While the specific model
[58] studied in this Letter seems to allow for an instability
that triggers spatiotemporal chaotic states with bands of
opposite polarities which show up as spots and streaks [59],
the precise mechanisms involved are left for future work.
Nature exploits Lévy movements and anomalous dif-

fusion, across scales, ranging from the microscopic to
ecological [60], and across taxa, from systems comprising
individual agents like midge swarms [61], migrating
metastatic cancer cells [62], living cancer cells [63] and
intracellular DNA transport [64], foraging marine predators
[65], and expanding colonies of seemingly immobile beach
grasses [66], to dense systems with collective flow states
like swimming bacteria [15]. Yet, detecting Lévy walks
theoretically in active turbulence has remained elusive,
despite some experimental results strongly suggestive of
their existence. While recent work using a particle-based
active model [32] reconciles some of these findings, the
lack of consistency with the most general hydrodynamic
framework to describe active suspensions is surprising. We
uncover why this is, showing that, while it is true that
anomalous diffusion is hardly detectable (though incipient
in the light of our results) for mildly active suspensions,
such systems exhibit distinct Lévy walks and superdiffu-
sion when nudged to higher levels of activity.
Our observations of the vorticity spots and streaks, a

basis of future theories of emergent anomalous diffusion,
provide a template for clearly identifiable structures exper-
imentally. Thus, experiments would be able to probe how
universal these patterns are, aiding a more robust under-
standing of why they emerge and whether they are central
to the superdiffusive behavior of such systems. Recent
works, which derive the hydrodynamic model presented
here from microswimmer dynamics, show that the activity
is related, among other factors, to their individual motility
[67,68]. Thus, high activity might be achieved by tuning
the motility. A potential candidate for an experiment is a
spermatozoa suspension [69], which also exhibit a turbu-
lent phase [70] and whose motility can be controlled by
changing the ambient temperature [71].
Finally, we underline what sets active turbulence apart

from inertial fluid turbulence and, thus, the limitations of
drawing equivalences between the two. The Lagrangian
picture, arising from our work, marks a crucial departure in
the analogy in a rather counterintuitive way. This is because
for Eulerian statistics, increasing activity results in a more
intermittent vorticity field and accompanying power-laws
of energy spectra [33] like in two-dimensional fluid
turbulence. However, this “increasingly turbulent state”
in active systems is paradoxically accompanied by persis-
tent superdiffusion, Lévy walks, and structural changes in
the vorticity field which have no known counterparts in
inertial turbulence. It would be interesting, however, to see
how this distinction manifests itself in other measurements
such as pair-particle dispersion [72].

FIG. 4. Extremely active suspensions show that (a) the vorticity
field is dominated by streaks interspersed with fewer vortical
spots [magnified view in panel (b) with velocity vectors as arrows
and instantaneous streamlines as solid lines] and is associated
with (c) robust anomalous diffusion Δx2 ∼ t4=3, reflected in a
representative trajectory (inset).
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Before concluding, we recall that our MSD exponent
ξ ≈ 4=3 (at high activity) is consistent with those predicted
for 1D Hamiltonian systems [73]. Whether this suggests a
possible underlying universality is unclear. Recent theo-
retical studies of the walk time distribution [74,75] show
that local dynamics are central to superdiffusion with
γ ¼ 3=2. While we detect γ ≈ 5=3, it is possible that this
exponent is one of intermediate asymptotics (in α) which
may converge to 3=2 for sufficiently high activity
and diffusive behavior appears as a preasymptotic correc-
tion to the asymptotic superdiffusive regime [76] that we
report.
Our Letter suggests that activity is geared for manifesting

optimality: Yet another way biological systems continue to
defy bounds on inanimate matter, now in a turbulencelike
flow state. This gives new direction to the assessment of
what is truly turbulent, and universal, in low Reynolds
number active flows.
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walks, such as those seen in the anomalous diffusion of cold
atoms in optical lattices, where this linear relation fails
[53,54].

[53] D. A. Kessler and E. Barkai, Phys. Rev. Lett. 108, 230602
(2012).

[54] E. Barkai, E. Aghion, and D. A. Kessler, Phys. Rev. X 4,
021036 (2014).

[55] R. Pandit, P. Perlekar, and S. S. Ray, Pramana J. Phys. 73,
157 (2009).

[56] R. Pandit, D. Banerjee, A. Bhatnagar, M. Brachet, A. Gupta,
D. Mitra, N. Pal, P. Perlekar, S. S. Ray, V. Shukla, and D.
Vincenzi, Phys. Fluids 29, 111112 (2017).

[57] H. Wensink and H. Löwen, J. Phys. Condens. Matter 24,
464130 (2012).

[58] L. Chen, C. F. Lee, and J. Toner, Nat. Commun. 7, 12215
(2016).

[59] A. Maitra (private communication).
[60] A. M. Reynolds, Biol. Open 7, 030106 (2018).
[61] A. M. Reynolds and N. T. Ouellette, Sci. Rep. 6, 30515

(2016).
[62] S. Huda, B. Weigelin, K. Wolf, K. V. Tretiakov, K. Polev, G.

Wilk, M. Iwasa, F. S. Emami, J. W. Narojczyk, M. Banaszak
et al., Nat. Commun. 9, 4539 (2018).

[63] N. Gal and D. Weihs, Phys. Rev. E 81, 020903(R)
(2010).

[64] A. Muralidharan, H. Uitenbroek, and P. E. Boukany,
bioRxiv (2021), https://doi.org/10.1101/2021.04.12.435513.

[65] D.W. Sims, E. J. Southall, N. E. Humphries, G. C. Hays,
C. J. Bradshaw, J. W. Pitchford, A. James, M. Z. Ahmed,
A. S. Brierley, M. A. Hindell et al., Nature (London) 451,
1098 (2008).

[66] V. C. Reijers, K. Siteur, S. Hoeks, J. van Belzen, A. C. Borst,
J. H. Heusinkveld, L. L. Govers, T. J. Bouma, L. P. Lamers,
J. van de Koppel et al., Nat. Commun. 10, 2656 (2019).

[67] S. Heidenreich, J. Dunkel, S. H. L. Klapp, and M. Bär, Phys.
Rev. E 94, 020601(R) (2016).

[68] H. Reinken, S. H. L. Klapp, M. Bär, and S. Heidenreich,
Phys. Rev. E 97, 022613 (2018).

[69] M. James, D. A. Suchla, J. Dunkel, and M. Wilczek,
arXiv:2005.06217.

[70] A. Creppy, O. Praud, X. Druart, P. L. Kohnke, and F.
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