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We identify an unusual mechanism for quantum oscillations in nodal semimetals, driven by a single pair
of Landau levels periodically closing their gap at the Fermi energy as a magnetic field is varied. These “zero
Landau level” quantum oscillations (ZQOs) appear in the nodal limit where the zero-field Fermi volume
vanishes and have distinctive periodicity and temperature dependence. We link the Landau spectrum of a
two-dimensional (2D) nodal semimetal to the Rabi model, and show by exact solution that, across the entire
Landau fan, pairs of opposite-parity Landau levels are intertwined in a “serpentine” manner. We propose
2D surfaces of topological crystalline insulators as natural settings for ZQOs. In certain 3D nodal
semimetals, ZQOs lead to oscillations of anomaly physics. We propose a transport measurement capable of
observing such oscillations, which we demonstrate numerically.
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Introduction.—Quantum oscillations (QOs)—the peri-
odic modulation of transport [1] and thermodynamic [2]
properties of materials as an external magnetic field B is
varied—are among the most striking manifestations of
quantum mechanics in the solid state. The oscillation
period depends on the shape of the Fermi surface (FS),
while information on FS parameters and scattering mech-
anisms can be extracted from the oscillation amplitude and
its temperature dependence [3]. The utility of QOs as a
probe of electronic structure rests on two theoretical pillars.
The first is Onsager’s result [4],

ΔO
1=B ¼ 2πS−1

e ; ð1Þ

relating their periodicity in 1=B to an extremal cross-
sectional FS area Se in a plane normal to B (we set
ℏ ¼ e ¼ 1). The second is the Lifshitz-Kosevich formula [5]

RLKðTÞ ¼
2π2T

ωc sinhð2π2T=ωcÞ
ð2Þ

with kB ¼ 1, relating the temperature (T) dependence of the
oscillation amplitude (shown here for the first harmonic) to
the cyclotron frequency ωc ¼ B=m�, allowing the extrac-
tion of the effective mass m�, averaged over Se.
Topological insulators and nodal semimetals [6] modify

this picture. The effective-mass approximation implicitly
assumed in (1) and (2) is violated by Weyl or Dirac
dispersions, and the QO phase is altered by electronic
Berry phases of topologically nontrivial bands [7].
Although many features may be captured by adapting

the semiclassical theory [8,9], the latter assumes the
existence of a FS at B ¼ 0. It does not readily apply if a
FS is absent, as in an insulator, or when it shrinks to a point
in two dimensions or a point or line in 3D, situations that
cannot be generated solely by the intersection of unhybri-
dized bands. Such systems enter the quantum limit for any
B ≠ 0, necessitating a full solution of the Landau level (LL)
spectrum.
In 2D, our focus in much of this Letter, a linear crossing

of a pair of energy bands at E ¼ 0 is generically described
by the 2D Dirac equation. Viewed in isolation, such a
dispersion gives rise to a fan of LLs whose energies evolve
∝

ffiffiffiffi
B

p
, with the exception of a single B-independent LL at

E ¼ 0. While 1=B-periodic QOs emerge at any finite
doping, at charge neutrality—corresponding to a point-
node FS for B → 0—conventional QOs are absent since no
LLs cross the Fermi energy at EF ¼ 0. However, in bulk
systems, such nodal points always appear in pairs that are
usually separated in the Brillouin zone (BZ) for symmetry
reasons. Consequently, in principle, there is always mixing
of LLs emerging from distinct nodes. The intuitive expect-
ation is that, as B is increased, the zero-energy LLs from
distinct nodes will experience increasingly strong mutual
level repulsion, pushing them away from EF without
intersecting it [10–13].
Here, we show that a class of nodal-point semimetals

violates this expectation: the zero-energy LLs oscillate
about each other in energy as B is varied, leading to robust
QOs as they repeatedly intersect EF. The simplest instance
of this general phenomenon of zero-LL QOs (ZQOs)
occurs when a pair of 2D parabolic bands with effective
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mass m undergo a band inversion of strength Δ. This leads
to a degenerate nodal ring at jkj ¼ k0 ≡

ffiffiffiffiffiffiffiffi
mΔ

p
, which,

assuming inversion or mirror symmetry, is generically
gapped by hybridization except at a pair of nodal points
at�k0¼�k0x̂with anisotropic velocities vx¼vc≡

ffiffiffiffiffiffiffiffiffiffi
Δ=m

p
,

vy ¼ v. We relate the associated LL problem to the Rabi
model of quantum optics and, by exact solution, identify a
sequence of QOs at charge neutrality. Although Se ¼ 0,
these zero-LL QOs show 1=B periodicity controlled by the
FS area S0 ¼ πk20 of the unhybridized bands at EF ¼ 0,
corrected by a factor

ΔZLL
1=B ¼ 2πγ2S−1

0 ; γ ¼ 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2=v2c

q
: ð3Þ

The ZQOs only occur if v < vc and disappear above
B0 ¼ S0=πγ2. They originate from the serpentine motion
of two LLs that straddle EF and periodically open and close
their gap while remaining bounded within an envelope
EðBÞ and separated from other LLs. At temperatures where
these two states dominate the spectrum, ZQOs show non-
Lifshitz-Kosevich (LK) behavior

RZLLðTÞ ¼
EðBÞ
2T

tanh2
EðBÞ
2T

: ð4Þ

The explicit form of EðBÞ, given below, cannot be modeled
by a cyclotron frequency with an effective mass, and as
B → 0 has the nonperturbative form EðBÞ ∼ e−B

�=B.
ZQOsdiffer fromother proposed routes toQOs atSe ¼ 0.

The purely orbital origin of ZQOs and the associated
serpentine Landau fan distinguishes their mechanism from
recent proposals of Zeeman-driven “LL inversions” [14]. As
they do not invoke surface states stemming from a topo-
logically nontrivial band structure, ZQOs differ from Fermi-
arc QOs in Weyl or Dirac semimetal slabs [15]. The e−B

�=B

dependence of the ZQO envelope and their link to the
unhybridized FS area are reminiscent of QOs in narrow-gap
insulators [16–27]. Both phenomena can be understood by
extending the semiclassical approach to include phase-
coherent tunneling through classically forbidden regions
in the BZ. However, the serpentine fan, the γ-dependent
period, and the gap closings at EF are special to ZQOs.
UnlikeQOs in insulators, whose effect on the conductivity is
suppressed by the activation gap, ZQOs remain observable
in transport even as T → 0. ZQOs thus represent a distinct
class of magnetic oscillation phenomenon.
Below, we substantiate these claims by introducing and

exactly solving a model that exhibits ZQOs, derive (3) and
(4), and explain their connection to the serpentine structure
across the Landau fan. We argue that key features persist
even upon relaxing simplifying assumptions of the solvable
limit. We close with a discussion of the observability and
interpretation of ZQOs.

Model and LL spectrum.—As noted above, the simplest
model showing ZQOs begins with a kp Hamiltonian for a
spinless band-inverted electron in 2D,

HðkÞ ¼
�jkj2
2m

−
Δ
2

�
τz þ vkyτy; ð5Þ

where Δ, v > 0, and τα are Pauli matrices acting in orbital
space. At half filling and low energy, this yields the
advertised Dirac cones at �k0, with anisotropic velocities
ðvx; vyÞ ¼ ðvc; vÞ; we present results in terms of k0, v, vc.
The Dirac points are protected by inversion (parity)P∶τz ⊗
ðk → −kÞ and time reversal T ∶K ⊗ ðk → −kÞ, where K is
complex conjugation.
We incorporate a magnetic field Bẑ ¼ ∇ × A via Peierls

substitution k → π ¼ k − A, so that ½πx; πy� ¼ iB. We first
obtain the LL spectrum numerically (Fig. 1), by truncating
in the basis defined by a†ajni ¼ njni, where a ¼ ðπx þ
iπyÞ=

ffiffiffiffiffiffi
2B

p
and ½a; a†� ¼ 1 at large finite n. At small B, the

low-energy spectrum has the Dirac LL form En ∼
ffiffiffiffiffiffi
Bn

p
. As

B is increased, pairs of LLs oscillate about each other in a
serpentine manner, becoming degenerate at a series of
crossing points absent for v > vc. All crossings occur at a
set of “magic fields,”

BN ¼mðΔ−mv2Þ
2Nþ 1

¼ 1

πγ2
S0

ð2N þ 1Þ ; N ¼ 0;1;…; ð6Þ

whence we obtain (3). The final set of crossings occurs at
B0 ¼ k20=γ

2, beyond which En ∼ Bn as for the unhybri-
dized bands. The central pair of LLs that oscillate about
E ¼ 0 are well separated from other LLs.

FIG. 1. (a) Serpentine Landau level fan computed for v ¼ vc=6.
Even- and odd-parity LLs (black and gray lines) repeatedly self-
intersect within a widening envelope as B is varied. ZQOs
originate from a pair that repeatedly intersects the Fermi energy
(E ¼ 0) at magic fields BN (red lines), where the LL problem
simplifies. The oscillation magnitude is well approximated by
�EðBÞ derived in the main text (dashed lines). (b) Zero-field
dispersion of H (5).
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In a rotated Pauli basis σα ¼ eðiπτy=4Þταe−ðiπτy=4Þ, we have

H ¼
�jπj2
2m

−
Δ
2

�
σx þ vπyσy ¼

�
0 h†

h 0

�
; ð7Þ

where h is the non-Hermitian Hamiltonian for a 1D
harmonic oscillator in a constant imaginary vector
potential,

h ¼ ω½a†a − δþ ηða − a†Þ�≡ ωðA†
þA− − ΓÞ; ð8Þ

with ω¼ðBvc=k0Þ, δ¼ðk20=2BÞ−1
2
, η ¼ ðv=vcÞðk0=

ffiffiffiffiffiffi
2B

p Þ,
and Γ ¼ ðk20=2γ2BÞ − 1

2
. The shifted ladder operators A� ¼

a� η are related to a via a similarity transformation by
W ¼ W† ¼ eηðaþa†Þ,

A†
þ ¼ Wa†W−1; A− ¼ WaW−1: ð9Þ

h is diagonalized by right and left eigenvectors jwni ¼
Wjni and hw̄nj ¼ hnjW−1 with eigenvalues λn ¼ ωðn − ΓÞ,
that are biorthogonal: hw̄njwn0 i ¼ δnn0 . We observe that if
h†hjϕii ¼ E2

i jϕii with Ei ≠ 0, then the states jψ i;�i ¼
ðjϕii;�ðh=EiÞjϕiiÞ are eigenstates of H with eigenvalues
�Ei. Since the parity operator P ¼ ð−1Þa†aσx ≡ Paσ

x

commutes with H, Pjψ i;�i ¼ ½�Paðh=EiÞjϕii; PajϕiiÞ is
also an eigenvector of H with eigenvalue �Ei. For generic
B ≠ BN ,P does not enforce any degeneracies, and there are
no E ¼ 0 solutions.
At magic fields B ¼ BN > 0, which exist only if v < vc,

additional structure emerges. First, Γ ¼ N, so that jψ0i ¼
ðjϕ0i; 0Þ and jψ̄0i ¼ ð0; jϕ̄0iÞ, where

jϕ0i ¼ N
−1
2

N jwNi; jϕ̄0i ¼ N
−1
2

N jw̄Ni; ð10Þ

with N N ¼ hwN jwNi, are exact E ¼ 0 eigenstates of H.
Furthermore, h†h only mixes jwni with jwn�1i and anni-
hilates jwNi and hence has a decoupled subspace spanned
by fwn≤Ng. Apart from the zero-energy states, this gives
rise to 2N energy levels jψ i;�i, i ¼ 1; 2;…N with jEij ≠ 0

expressible in terms of a finite sum of jwni, via jϕii ¼P
N
n¼0 ϕi;njwni. We now observe that Pah ¼ h†Pa,

PaWPa ¼ W−1, and hence Pajwni ¼ ð−1Þnjw̄ni; therefore,
Pahjϕii ¼ h†Pajϕii≡P

N
n¼0 ϕ̄i;njw̄ni is a finite sum of

jw̄ni. This forces jϕii and Pahjϕii to be linearly indepen-
dent [28]: this follows since linear dependence requires
hw̄mjPahjϕii ∝ hw̄mjϕii ¼ 0 for m > N (due to biortho-
gonality), but since hw̄mjw̄ni ≠ 0 generically, this over-
constrains the ϕ̄i;n and forces them to vanish, leading to a
contradiction. Since jϕii and Pahjϕii are linearly indepen-
dent, so are jψ i;�i and Pjψ i;�i. Thus, each �Ei level is
twofold degenerate, with orthogonal eigenstates obtained
by projecting jψ i�i onto the even- and odd-parity sectors;
including the E ¼ 0 states, there are thus 2N þ 1 pairwise

LL crossings at BN . As B is increased above BN , the LLs
split linearly with same-parity LLs from adjacent energies
approaching each other and undergoing avoided crossings.
The 2N − 1 LL pairs closest to E ¼ 0 again show crossings
at BN−1. The LLs thus oscillate about each other, forming
serpentine pairs whose final crossing occurs at successively
lower B for increasing jEj (Fig. 1). Since this structure
relies on repulsion between adjacent LL pairs, it cannot be
obtained by working perturbatively within each pair. The
crossings are all observed to occur within the band overlap
window jEj < Δ=2 and are a manifestation of the crossover
between the distinct LL structures of the Dirac points and
the parabolic band inversions. For v > vc, Γ < 0 for all B
and so there are no magic fields, and the serpentine
structure is lost.
We can link the unusual structure ofH to its membership

in a class of quasi-exactly-solvable models [32].
Specifically, it can be mapped to an “analytic continuation”
of the Rabi model [28], which is known to have rich
analytical structure [33,34]. Finally, we discuss the effect of
various perturbations on ZQOs in the Supplemental
Material [28].
Energy envelope.—We estimate the ZQO envelope using

perturbation theory near BN, yielding definite-parity eigen-
states ð1= ffiffiffi

2
p Þðjψ0i � jψ̄0iÞ with approximate energies

E�ðBÞ ≈�EðBÞ cosðπB0=2BÞ ð11Þ

to OðjB − BN j2Þ near any BN, where EðBNÞ ¼
BNvc=ðπk0N NÞ is analytically continued to all B, and
N n ¼ e−2η

2

1F1ð1þ n; 1; 4η2Þ with 1F1 the hypergeomet-
ric function. Asymptotically, for B ≪ B0 we have

EðBÞ ≈
�
Bvc=½πk0I0ðB0=BÞ�; B=≪ðγ2 − 1ÞB0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Bvvc=π

p
e−B

�=B; B ≪ ðγ2 − 1ÞB0;
ð12Þ

where I0ðxÞ is a Bessel function, B0 ¼ 2B0

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
, and

B� ¼ B0fγ
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
− logðγ −

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
Þg [28]. ZQOs

depend exponentially on B for B ≪ B0 and saturate for
B > B0. For v ≪ vc, B0 < B0 so there is a finite window
where ZQOs are especially amenable to detection (though
they are likely observable even in the exponential regime,
which describes the entirety of Fig. 1). As v increases, this
window shrinks, vanishing at v ¼ vc=

ffiffiffi
5

p
when B0 ¼ B0.

For vc=
ffiffiffi
5

p
≤ v < vc, ZQOs are always in the exponential

regime and are absent for v ≥ vc. The exponential onset in
B is a signature of ZQOs.
Non-LK temperature dependence.—Since ZQOs arise

from the motion of just two states, we expect distinctive
thermodynamic signatures at charge neutrality and low but
finite temperature T ¼ β−1, controlled by the low-energy
density of states per unit area [18]

PHYSICAL REVIEW LETTERS 127, 116602 (2021)

116602-3



DβðBÞ ¼ −
Z

dEn0FðEÞρðEÞ ≈
βB=ð4πÞ

cosh½βE�ðBÞ=2�2
; ð13Þ

where n0FðEÞ ¼ −βeβE=ð1þ eβEÞ2 is the derivative of the
Fermi function, ρ is the single particle density of states, and
we have taken into account the LL degeneracy per unit area
B=2π. The final form is valid at temperatures where only
the two central states E�ðBÞ contribute and leads to the
non-LK behavior (4) in the oscillation magnitude. In the
metallic limit v ¼ 0, or at very high temperatures,
the central two states can no longer be treated as separate
from the remaining spectrum and the conventional LK form
(2) is restored.
Topological crystalline insulators.—Having explained

the origin of ZQOs in a solvable model and argued that they
survive on relaxing its simplifying assumptions (and in the
tight-binding limit [28]), we now turn to identifying
experimental settings where they may be observable.
Although the models discussed thus far are quite fine-
tuned for quasiexact solvability, the physics of ZQOs
should be relatively universal in Dirac systems with weakly
gapped nodal rings. As a concrete example, consider the 2D
surface of a 3D topological crystalline insulator [35] (TCI)
with mirror symmetry (a description that encompasses the
SnTe material class), described by the kp Hamiltonian [36]

HT ¼ vTðkxsy − kysxÞ þmTτ
x þ δTsxτy: ð14Þ

Although very different from H, the low-energy dispersion
of HT also hosts two Dirac cones connected via a weakly
gapped nodal ring [37]. The positions of the two nodal
points and their velocities are k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2T þm2

T

p
=vT ,

vx ¼ vT , vy ¼ δT=k0. The zero-energy eigenstates of HT

can be determined exactly and appear at fields BT;N ¼
m2

T=ð2v2TNÞ for positive integers N. The oscillation mag-
nitude ETðBÞ displays the same qualitative behavior as
EðBÞ [28]. The parameters of HT have been experimentally
determined in a number of materials [36,39–42]. ZQOs
occur for B < BT;1, and depend exponentially on inverse
field when B ≪ B0

T ¼ 2δTmT=v2T , from (12). As a typical
example, parameters relevant to SnTe [36,39] give
ðB0

T; BT;1Þ ≈ ð54; 52Þ T with the envelope function
ETð15 TÞ ≈ 1 K [28]. This places the corresponding
ZQOs in the exponential regime and are observable within
the ranges of fields and temperatures currently achievable
in experiments using pulsed magnetic fields [43]. The
parameters mT and δT are tunable by strain [38]: even a
small change can have a significant effect on the ZQOs due
to the exponential dependence. ZQOs can therefore serve
as a sensitive probe of TCI surface states.
Three dimensions.—The physics of ZQOs also general-

ize to 3D. A prototypical model for a Weyl semimetal with
broken T symmetry [6],

HWeylðkÞ ¼
�jkj2
2m

−
Δ
2

�
σx þ vkyσy þ wkzσz; ð15Þ

coincides with (5) (up to a mass term) at each kz and
therefore exhibits ZQOs under a magnetic field Bẑ for
v < vc. The condition v < vc is naturally satisfied in Weyl
semimetals that are proximate to a nodal line semimetal
limit v ¼ 0 where the two nodes form a nodal ring, for
example, in scenarios where the protecting symmetries of
the Weyl ring are weakly broken [44,45]. The presence of
zero modes at kz ¼ 0 in a magnetic field corresponds to the
existence of gapless bulk chiral LLs that propagate along
�ẑ. Hence, ZQOs correspond to a periodic opening and
vanishing of the gap between these chiral LLs, as illustrated
in Fig. 2(a). Since gaplessness of these LLs is crucial to
magnetotransport effects linked to the chiral anomaly and
Fermi arcs [15,46–49], a striking implication of ZQOs is
that such phenomena will also experience 1=B-periodic
revivals. As a demonstration, Fig. 2(b) shows a transport
measurement capable of probing ZQOs: four leads labeled
by i ¼ 1;…; 4 are connected to a bulk sample and the
conductance matrix Cij, defined in terms of the lead current
and voltage via Ii ¼ CijVj, is measured. Figure 2(c) shows
that C21, computed numerically at T ¼ 0 for a discretized
model, is highly sensitive to ZQOs and can be understood
as follows. At zero and low fields, electrons from lead 1
flow mainly into Fermi-arc surface states, which drives
current 1 → 3 as indicated by (i). At higher fields, electrons
are transferred to the bulk chiral modes before making it to
lead 3 [15]. When these chiral modes are perfect (i.e.,
gapless at B ¼ BN), electrons fully traverse the bulk and
drives current 1 → 2 (ii). Otherwise, electrons are only able
to traverse a finite distance into the bulk before turning
back, resulting in no current (iii). Indeed, C21 demonstrates
clear peaks at each magic field, which become sharper with
increasing thickness Lz. Details and discussion of the

FIG. 2. (a) The LL dispersion ofHWeyl at and in between magic
fields B3, B2, and B1 for v ¼ vc=6, illustrating the 1=B-periodic
gap closings of the chiral LLs resulting from ZQOs. (b) A
proposed experimental setup for observing ZQOs in 3D. Four
leads are attached to a bulkWeyl semimetal. (c) Numerical results
for the C21 element of the conductance matrix shows clear peaks
at the magic fields.
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numerical calculation, performed using the KWANT [50]
code, is available in the Supplemental Material [28].
Conclusions.—In closing, we note a complementary

perspective on ZQOs in the B → 0 limit emerges upon
considering E ¼ 0 semiclassical tunneling trajectories in
the BZ between the Dirac points at �k0. These capture
instanton events that generate repulsion between the zero-
energy LLs of the Dirac points; they have a complex action,
leading to a tunneling matrix element whose phase (ampli-
tude) depends on πB0 (B�). Summing over tunneling events
[51] and recalling that B plays the role of ℏ in the
semiclassical expansion yields a result consistent with
the B → 0 limit of (11). Intuitively, ZQOs emerge when
optimal tunneling trajectories linking distinct B ¼ 0
Dirac points in the BZ involve an excursion to
ky ≠ 0 acquiring an Aharanov-Bohm phase and its asso-
ciated interference effects, which vanish for v ≥ vc when
these trajectories are fixed at ky ¼ 0. (Similar consider-
ations yield QOs in narrow-gap insulators, but since these
lack zero-energy LLs, it is more natural to view semi-
classical effects as modulating the LL gap at EF rather than
generating LL repulsion.) This places ZQOs on concep-
tually similar footing with “tunneling interference” effects
[52–57] and indicates that these ideas are broadly appli-
cable. Finally, as a quasi-exactly-solvable model amenable
to semiclassics, (5) is potentially noteworthy in the context
of “resurgent asymptotics” in quantum mechanics [58–61].
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