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We propose a general and tunable platform to realize high-density arrays of quantum spin-valley Hall
kink (QSVHK) states with spin-valley-momentum locking based on a two-dimensional hexagonal
topological insulator. Through the analysis of Berry curvature and topological charge, the QSVHK states
are found to be topologically protected by the valley-inversion and time-reversal symmetries. Remarkably,
the conductance of QSVHK states remains quantized against both nonmagnetic short- and long-range and
magnetic long-range disorder, verified by the Green-function calculations. Based on first-principles results
and our fabricated samples, we show that QSVHK states, protected with a gap up to 287 meV, can be
realized in bismuthene by alloy engineering, surface functionalization, or electric field, supporting
nonvolatile applications of spin-valley filters, valves, and waveguides even at room temperature.
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Two-dimensional (2D) hexagonal lattices offer a versatile
platform to manipulate charge, spin, and valley degrees of
freedom and implement different topological states. While
pioneering predictions for the quantum anomalous and
quantum spin Hall (QSH) effects [1,2] were guided by
graphenelike systems, graphene poses inherent difficulties
with its weak spin-orbit coupling (SOC) and a gap of only
Δ ∼ 40 μeV [3]. The quest for different 2D hexagonal
monolayers (MLs) with a stronger SOC on one hand reveals,
as in transition metal dichalcogenides, an improved control
of valley-dependent phenomena [4], emulating extensive
research in spintronics [5], while on the other hand, as in a
ML Bi on SiC (Bi=SiC) substrate, topological states remain
even above room temperature with a huge topological gap
∼0.8 eV [6]. However, examples where valley degrees of
freedom support robust topological states are scarce.
In 2D materials with broken inversion symmetry, such as

gapped graphene [7–12] and transition metal dichalcoge-
nides [13,14], the opposite sign of the momentum-space
Berry curvature ΩðkÞ in different valleys is responsible for
a valley Hall effect, where the carriers in different valleys
turn into opposite directions transverse to an in-plane
electric field [7,14]. A striking example of such a sign
reversal in ΩðkÞ [see also Fig. 1] along an internal
boundary of a film is realized in quantum valley Hall kink
(QVHK) states [15–29]. The resulting topological defect
supports counterpropagating 1D chiral electrons, topologi-
cally protected by the valley-inversion symmetry [15–19].

The underlying mechanism for the formation of zero-
energy states, expected from the index theorem [30,31],
shares similarities with many other systems in condensed
matter and particle physics [32–39]. While the proposals
for QVHK mainly focus on bilayer graphene (BLG)
systems [20–24], the required sign reversal in ΩðkÞ
realized by either the random local stacking faults
[20,22] or a dual-split-gate structure [21,23,24] is chal-
lenging to implement to achieve high-density channels.
With the required applied electric field, the volatility of

FIG. 1. (a) Schematic of the QSVHK states ðA; BÞ at the valleys
K and K0, and QSH edge states ðC;DÞ in a junction formed by
QVH and QSH insulators. 2L is the junction length. The red
(blue) arrow denotes the spin-up (down) channel. (b),(c) The
schematic of the bands and Berry curvatures (black lines) for
QVH and QSH insulators, distinguished by the relative strength
of the SOC, λSO, and staggered potential U.
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QVHK limits their envisioned use in valleytronics. A small
gap of BLG ∼ 20 meV [21] excludes high-temperature
applications, and QVHK states were limited to 5 K [20–
24]. Crucially, disorder easily induces intervalley scatter-
ing, preventing the expected ballistic transport in QVHK
states [20,21,29].
Motivated by these challenges, we propose a robust

platform to realize high-density arrays of spin-polarized
QVHK states at room temperature based on a 2D hexagonal
topological insulator, where the QVHK states are simulta-
neously the QSH edge states, forming along the QSH-
quantum valley Hall (QVH) interface as shown in Fig. 1.
The QSH is described by a topological invariant Z2 ¼ 1
[2], while the QVH is characterized by a quantized valley
Chern number CV ¼ 1 and Z2 ¼ 0 [8,19]. Across their
interface, both Z2 and CV change the value; thus the QSH
and QVHK states simultaneously emerge along the inter-
face, giving largely unexplored topological kink states that
we term quantum spin-valley Hall kink (QSVHK) states.
Unlike the previous studies of the interplay between
topological states [15–29,36–46], our proposed QSVHK
state shows a peculiar marriage between the QSH and
QVH. The QSH becomes robust against the magnetic long-
range disorder due to the valley-inversion symmetry
protection of the QVH [15–19], while the QVH can be
robust against the nonmagnetic short-range disorder
because of the time-reversal symmetry protection of the
QSH [2,47]. Thus, in contrast to the trivial spin-valley Hall
effects [48–50], the topological QSVHK states are robust
against both nonmagnetic short- and long-range and
magnetic long-range disorder, giving robust ballistic
spin-valley-momentum locking transport. The QSH-QVH

junction can be implemented by inducing a staggered
potential, U, in a part of the 2D topological insulators.
When U is smaller (larger) than the strength of the intrinsic
SOC, λSO, the QSH (QVH) state is obtained. Our first-
principles calculations reveal that U can be induced by
alloy engineering or surface decoration and easily con-
trolled by the electric filed.
We first present our idea through the analysis of a tight-

binding model based on px and py orbitals, which is widely
used to describe the physics of the hexagonal MLs,
including arsenene [51,52], antimonene [41,42,53,54],
bismuthene [6,50,55], and binary element group-V MLs
[56,57]:

H ¼ λSO
X

i

cþi σz ⊗ szci þ
X

i

Uic
þ
i σ0 ⊗ s0ci

þ
�X
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X
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�
: ð1Þ

Here, ci represents the annihilation operator on site i. σ and
s indicate the Pauli matrices acting on orbital and spin
spaces. The first term describes the intrinsic SOC, and the
second term gives the staggered potential with Ui ¼
Uð−UÞ for the AðBÞ sublattice. The hopping term

Tδj ¼
�

t1 zð3−jÞt2
zjt2 t1

�
⊗ s0 ð2Þ

describes the nearest hopping from site i to iþ δj, where
z ¼ expð2iπ=3Þ and t1=2 is the hopping coefficient. In the
absence of the first two terms in Eq. (1), the gapless Dirac

FIG. 2. (a) Bands and wave function distributions (jΨðxÞj2) for topological states A–D in the QSH-QVH junction with L ¼ 60 unit
cells. (b) Bands and schematic of the QVH-QSH-QVH junction with pure QSVHK states E–H. (c) Junction conductance G versus
nonmagnetic Anderson disorder strengthWNA at the Fermi level for the QSVHK and QVHK states. (d) Same as (c) but for the QSVHK
and QSH states versus magnetic long-range disorder strength WLM. (e) Same as (c) but versus magnetic Anderson disorder strength
WMA. The parameters U, λSO for the QVH and QSH regions are taken from the BiAs on SiC (BiAs=SiC) and Bi=SiC, respectively. The
hopping parameter is t1;2 ¼ 1 eV.
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points exist at the two valleys [50,55]. The staggered
potential and intrinsic SOC open a gap of 2jλSO − Uj at
the Dirac points and their competition determines the
topology of the system. When λSO < U, the system is in
QVH with Z2 ¼ 0 and opposite ΩðkÞ ≠ 0 at the two
valleys [Fig. 1(b)]. When λSO > U, the system is in
QSH with Z2 ¼ 1 and for U > 0 the sgn½ΩðkÞ� is reversed
as compared to the QVH [Fig. 1(c)]. We consider a planar
junction formed by the QVH and QSH [Fig. 1(a)], where
the QSVHK state emerges along their interface, since both
Z2 and ΩðkÞ change the sign.
To identify such QSVHK states, we calculate the

spectrum of the QSH-QVH junction along the zigzag
direction, where the valley degree can be preserved
[29,58,59]. As shown in Fig. 2(a), there are four non-
degenerate gapless states, A–D, in the bulk band gap. The
helicalC andD states are the common QSH states localized
at the outer edge of the QSH region, verified by their wave
functions in Fig. 2(a). The A (B) state at the K (K0) valley
shows the QSVHK state localized at the inner inter-
face [Fig. 2(a)]. Unlike the QVHK state in BLG, the
QSVHK state is fully spin-polarized. Specifically, the kink
state A (B) at K (K0) valley has a spin-up (down) channel.
Such spin-valley-momentum locking supports a perfect
spin-valley filter.
To better understand the emergence of the QSVHK state,

we focus on the low-energy physics of Eq. (1). We expand
the Hamiltonian around the valleys and obtain a continuum
model:

H ¼ ℏvFðkxσx þ τzkyσyÞ þ λSOszτzσz þ Uσz; ð3Þ

where νF is the Fermi velocity, σ, s, and τ are the Pauli
matrix for orbital, spin, and valley, respectively. From the
index theorem [30], the number of the kink channels is
related to the change of the bulk topological charges across
the interface [15,19,60]. The spin- and valley-projected
topological charge Csz

τz can be calculated by integrating the
spin-dependent ΩðkÞ of the valence bands around each
valley [15,19,60]. From the continuummodel in Eq. (3), we
obtain

Csz
τz ¼

τz
2
sgnðU − τzszλSOÞ: ð4Þ

In the QVH region, we get ðC↑
K; C

↓
K; C

↑
K0 ; C

↓
K0 Þ ¼

ð0.5; 0.5;−0.5;−0.5Þ and in the QSH region
ðC↑

K; C
↓
K; C

↑
K0 ; C

↓
K0 Þ ¼ ð−0.5; 0.5;−0.5; 0.5Þ. The number

of the kink modes per spin or valley ðν↑K; ν↓K; ν↑K0 ; ν
↓
K0 Þ

is an integer evaluated from the difference between
the topological charges in two regions [15,19], i.e.,
ðν↑K; ν↓K; ν↑K0 ; ν

↓
K0 Þ ¼ ð1; 0; 0;−1Þ. It is clear the spin-up

(down) topological charge has an integer change at the
K (K0) valley, giving the spin-valley polarized QSVHK
state. This topological charge analysis is consistent with

our discussion about the energy spectrum in Fig. 2(a). In
QSH-QVH junctions, there are still QSH states along the
outer edge. To eliminate them and realize a pure QSVHK
transport, we propose in Fig. 2(b) a QVH-QSH-QVH
junction, where the two pairs of QSVHK states are verified
by the calculated bands. Multiple channels can be expected
with more QSH-QVH boundaries, where the width of each
region should be large enough to avoid the interplay
between adjacent QSVHK states.
For valley-related transport, the influence of the short-

(long)-range disorder is usually significantly different since
the former (latter) induces (excludes) intervalley scattering
[61]. The former (latter) is characterized by the smaller
(larger) disorder correlation length λ compared to the lattice
spacing a [61]. For example, the QVHK state is only robust
against the long-range disorder [15–24]. To explore the
robustness of the QSVHK state against the disorder, we
calculate the junction conductance G using the Landauer-
Büttiker formula [62] and the Green-function method [63–
66] in the presence of nonmagnetic Anderson disorder
(λ → 0) [64,67] in the energy range ð−WNA=2;WNA=2Þ,
magnetic Anderson disorder [65,68] ð−WMA=2;WMA=2Þ,
and magnetic long-range (λ ¼ 7a) disorder [69,70]
ð−WLM=2;WLM=2Þ, where WNA, WMA, and WLM measure
their respective strengths. For comparison, we calculate
GðWNAÞ,GðWLMÞ, andGðWMAÞ in QVHKandQSH states,
shown in Figs. 2(c)–(e). See calculation details and the
crossover between the short- and long-range disorder in the
Supplemental Material [71]. For the QVHK state with
valley-momentum locking, its G decreases with WNA
increases, consistent with previous studies [20,21], because
theAnderson disorder breaks the valley-inversion symmetry
and leads to the intervalley scattering. For theQSH statewith
spin-momentum locking, itsG decreases withWLM (WMA),
because the time-reversal symmetry is broken by the
magnetic disorder, in agreement with the experiments
[80,81]. In contrast, for the QSVHK state with spin-valley-
momentum locking protected by both valley-inversion and
time-reversal symmetries, its G remains quantized against
both nonmagnetic Anderson disorder and magnetic long-
range disorder [Figs. 2(c),(d)]. The backscattering in the
QSVHK state can only be induced by simultaneously break-
ing the valley-inversion and time-reversal symmetries—
for example, by magnetic Anderson disorder [Fig. 2(e)].
However, with WMA, the G of the QSVHK state is still
higher than that of the QSH and QVHK states, since
simultaneously scattering spin and valley is harder than
scattering each of them.
Material design.—The key factor to achieve QSVHK is

creating an interface of the QSH and QVH. Since there are
a large number of hexagonal QSH insulators [58], a natural
way to obtain such an interface is to engineer a part of QSH
insulator into a QVH region, where U > λSO is requi-
red. Recently, group-V MLs bismuthene, antimonene,
and arsenene on a SiC substrate were predicted to be
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high-temperature 2D topological insulators [82]. For
Bi=SiC, a huge nontrivial gap of 0.8 eV has been measured
]6 ], originating from the intrinsic SOC of Bi px;y orbitals
[71]. However, with its inversion symmetry, Bi=SiC fails to
show valley-dependent effects, as verified by ΩðkÞ ¼ 0 at
all k [Fig. 3(c)]. To break the inversion symmetry, we
propose to use alloy engineering to induce U in bismu-
thene, a well-established approach to tailor electronic and
topological properties [83,84]. Specifically, we propose to
grow binary group-V MLs BiSb or BiAs on the SiC
substrate, depicted in Fig. 3(a). We expect the change in
the binary composition alters the strength of SOC (growing
with the atomic number Z) and U (growing with a relative
difference in Z of the two group-Velements), thus favoring
either QVH or QSH insulators, as shown in Fig. 1(a). BiSb
and BiAs films can be fabricated using molecular beam
epitaxy [Fig. 3(b)] similar to that growth of Bi=SiC or
exfoliated from bulk [51,52]. From first-principles cal-
culations, we see the BiSb=SiC and BiAs=SiC bands near
EF can be accurately described by the Hamiltonian in
Eq. (1) [71].
Without considering SOC, Bi=SiC has gapless Dirac

bands at two valleys, while the trivial gaps of 0.52 eV and
0.76 eV are opened in BiSb=SiC and BiAs=SiC [71],
respectively. Such gaps, originating from the staggered
potential, give UBiSb=SiC ¼ 0.26 eV and UBiAs=SiC ¼
0.38 eV. With SOC, a nontrivial gap of 66 meV is opened
in BiSb=SiC with ΩðkÞ ≠ 0 [Fig. 3(d)], giving a QSH

insulator with Z2 ¼ 1 and the helical edge states [Fig. 3(g)].
The edge states outside the gap are not useful for the robust
dissipationless transport because they are negligible com-
pared to the huge contribution from the trivial bulk bands
[47]. Figure 3(e) reveals a different situation for BiAs=SiC.
Because ofU > λSO, a gap of 287 meVappears at K and K0
with Z2 ¼ 0 and no topological edge states [Fig. 3(h)].
Compared to BiSb=SiC, the sign reversal of ΩðkÞ for
BiAs=SiC gives the desired QVH phase.
The resulting QSH-QVH junction [Fig. 1] can be rea-

lized combining BiAs=SiC (QVH) with Bi=SiC (QSH) or
BiSb=SiC (QSH). Alternatively, to simplify the fabrication
and yield QSH with an even larger nontrivial gap, the
BiAs-Bi=SiC junction is desirable where the verified
QSVHK states are shown in Fig. 2(a). In this analysis,
we exclude Rashba SOC [5] since its influence is negligible
in QSVHK as discussed in the Supplemental Material [71].
The BiAs-Bi=SiC junction provides a robust platform for
QSVHK, protected by a global gap of 287 meV, which is
∼14 times larger than in BLG [21], supporting ballistic
transport at high temperatures, verified by the finite-
temperature Green-function calculations and discussion
about the influence of the many-body interaction [71].
The desired QSH-QVH junction can be fabricated using

our well-established molecular beam epitaxy selective area
growth and stencil lithography [85] as shown in Fig. 3(b).
The fabrication process and the influence of the stoichi-
ometry are demonstrated in [71]. Multiple QSH-QVH
boundaries can be created by spatially selective deposition
[85,86], enabling transport of high-density channels. A
QSVHK state robust against nonmagnetic and long-range
disorder and insensitive to the interface configurations [71]
facilitates its experimental observation and possible appli-
cations. Unlike the QVHK state in BLG, the QSVHK state
in bismuthene is spin-polarized and requires no external
field. This offers nonvolatility in unexplored applications
coupling spin and valley, going beyond low-temperature
BLG valleytronic applications [23]. For example, the
QSVHK state supports fully spin-polarized quantum valley
currents, making spin-valley filters, valves, and waveguides
possible, or extends the functionalities for spin intercon-
nects [87–89].
Another way to realize the QSVHK state in a bismuthene

system is surface decoration, widely used to modify the
properties of the 2D materials [90]. Particularly, hydrog-
enation and halogenation have been a powerful tool to
induce large-gap QSH states in group-IV and V MLs
[55,91]. Based on first-principles calculations, we show
in Fig. 4 that the λSO and U in MLs BiAs can be tuned by
the surface decoration, giving either a QSH or a QVH
insulator. The structures of the hydrogenated (BiAsH2) and
halogenated (BiAsI2) BiAs MLs are shown in Fig. 4(a).
From the calculated bands and ΩðkÞ in Figs. 4(b) and (c),
we see the desired difference between BiAsH2 and BiAsI2.
While the first is a QVH insulator with a trivial gap of

FIG. 3. (a) Top and side views of a ML BiSb or BiAs on a SiC
substrate. (b) Scanning electron micrograph image of the planar
BiSb-Bi-BiSb junction with a Si3N4 stencil mask (gray) 300 nm
above the film for shadowing. BiSb-Bi interfaces are marked by
the red rectangle. (c)–(e) Bands (black) and Berry curvatures,
ΩðkÞ (blue), of the valence bands for the Bi=SiC, BiSb=SiC, and
BiAs=SiC, respectively. (f)–(h) Bands of the zigzag nanoribbons
for the Bi=SiC, BiSb=SiC, and BiAs=SiC, respectively. The fitted
parameters (λSO, U) for Bi=SiC, BiSb=SiC, and BiAs=SiC are
(0.44 eV, 0 eV), (0.30 eV, 0.26 eV), and (0.24 eV, 0.38 eV),
respectively.

PHYSICAL REVIEW LETTERS 127, 116402 (2021)

116402-4



26 meV, Z2 ¼ 0, and ΩðkÞ ≠ 0 at K and K0, the second
BiAsI2 is a QSH insulator with a nontrivial gap of 49 meV,
Z2 ¼ 1, and reversed ΩðkÞ. When two such MLs form a
junction [Fig. 1], the QSVHK state can emerge along its
interface. With hydrogenated and halogenated graphene
routinely fabricated [92,93], the BiAsH2-BiAsI2 junction
could be obtained from ML BiAs to support the QSVHK
state by using the spatially selective growth and stencil
lithography [71]. Since the electric field ε can directly
change U in 2D materials [21,23], we also explore the
possibility of an ε-controlled QSVHK state. Figure 4(d)
shows that for ε applied along the z direction in ML BiAsI2,
U is increased and the gap is closed when ε ¼ 0.5 V=Å, the
value achievable with ion-liquid gating [94,95]. Such a gap
closing indicates a topological transition from QSH to
QVH. Thus, the electric field can also be used to generate
and control the QSVHK state.
With experimental realization of the QSVHK state, it

would be possible to verify the inherent robustness of
quantized conductance of spin-polarized channels, in con-
trast to QSH insulators, where this quantization is fragile
even at He temperatures [80,81]. Furthermore, the QSVHK
state offers an intriguing opportunity to study its manifes-
tations of topological superconductivity through proximity
effects [81,88,96] and test the related role of disor-
der [97,98].
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