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A many-body wave function can be factorized in Fock space into a marginal amplitude describing a set
of strongly correlated orbitals and a conditional amplitude for the remaining weakly correlated part. The
marginal amplitude is the solution of a Schrödinger equation with an effective Hamiltonian that can be
viewed as embedding the marginal wave function in the environment of weakly correlated electrons. Here,
the complementary equation for the conditional amplitude is replaced by a generalized Kohn-Sham
equation, for which an orbital-dependent functional approximation is shown to reproduce the topological
phase diagram of a multiband Hubbard model as a function of crystal field and Hubbard parameters. The
roles of band filling and interband fluctuations are elucidated.
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First-principles calculations of topological invariants
usually rely on the Kohn-Sham band structure. This is
problematic for correlated materials: the topological phase
inferred from a mean-field band structure need not coincide
with the actual topological phase determined from the
correlated many-body wave function. Although one can
argue that a topological invariant cannot change as inter-
actions are turned on adiabatically, while maintaining an
energy gap and the relevant symmetries, true strongly
correlated topological phases could be characterized as
those phases that are not adiabatically connected to the
noninteracting Kohn-Sham ground state.
Embedding theories have been successful in describing

electronic correlations beyond standard density functionals
in extended systems [1–13]. In most embedding schemes, a
real-space fragment, such as an impurity site or a small set
of atomic or molecular orbitals, is embedded in its
surroundings. The use of a real-space fragment, typically
with only local or short-range interactions, inherently limits
the nonlocality and hence quasimomentum dependence
that can be described. Since topological invariants depend
on the global k dependence of the state, either through the
twisting of Bloch functions in the Brillouin zone [14] or the
behavior of the many-body wave function under twisted
boundary conditions [15–17], it is natural to ask whether
alternative embedding theories might be better suited to
capturing momentum-dependent correlations.

This Letter proposes a novel embedding theory rooted in
the exact factorization (EF)methodology [18–20], a scheme
for splitting themany-bodywave function intomarginal and
conditional probability amplitudes describing different
degrees of freedom. It has been applied to electrons and
nuclei [19–23], fast and slow electrons [24], electrons and
photons [25,26], and electrons and phonons [27].We turn to
the problem of strong electron-electron correlation and use
an extension of the exact factorization formalism to Fock
space [28] to develop a novel embedding theory. Here,
the marginal amplitude describes the strongly correlated
degrees of freedom embedded in the remaining weakly
correlated degrees of freedom.
For the purpose of calculating topological invariants, the

key advantage of an EF-based embedding formalism lies in
the ability of the explicitly correlated marginal wave
function to capture the k-dependent phase information
of the strongly correlated electrons, which is partly lost in
approaches based on Green’s functions or reduced density
matrices. The contribution of the remaining weakly corre-
lated electron bands can be adequately described through
mean-field Bloch functions. Thus, one can go beyond
density functional theory, while avoiding empirical models
and the infeasibility of including all degrees of freedom in a
many-body calculation of the solid.
To apply the exact factorization formalism to a many-

electron wave function, we start by writing it in Fock space
as a superposition of products of many-body configurations

jΨi ¼
X
SD

cSDjSijDi; ð1Þ

where jSi ¼ c†s1 ;…; c†sNS
j0i and jDi ¼ c†d1 ;…; c†dND

j0i are
constructed from orbitals belonging to mutually orthogonal
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sets S and D of weakly and strongly correlated orbitals;
S ¼ s1s2;…; sNS

is a string of indices labeling the orbitals
and similarly for D. The jSi and jDi factors may have
varying particle numbers in each term of Eq. (1), but
NS þ ND ¼ N is fixed. Following the EF procedure [28],
the marginal amplitude is defined to be χD ¼ eiΘD jχDj with

jχDj2 ¼
X
S

jcSDj2 ð2Þ

and an arbitrary phase ΘD. The conditional factor

ΦSjD ¼ cSD=χD ð3Þ

then satisfies the partial normalization condition

X
S

jΦSjDj2 ¼ 1 ∀D: ð4Þ

We thus arrive at the factorization cSD ¼ χDΦSjD.
A criterion is needed to partition the complete set of

single-particle orbitals into weakly and strongly correlated
sets S and D. While different strategies are possible, here
we perform the separation through a criterion involving the
natural occupation number bands, i.e., the bands formed by
the k-dependent eigenvalues of the one-body reduced
density matrix in the Brillouin zone of the crystal.
Strongly correlated orbitals are defined to be those belong-
ing to a band whose occupation numbers satisfy flower ≤
fnk ≤ fupper with judiciously chosen flower and fupper,
while the rest are called weakly correlated. While our
formalism can be applied with any choice of S and D, it
will become computationally prohibitive if too many bands
are included in D. We have in mind situations where
correlations are concentrated in relatively few bands
with only weak residual correlations in S, so that the
occupation numbers of the latter are very close to 0 and 1
and can be accurately described by standard density func-
tional approximations. Natural occupation numbers in
extended systems have only been reported for one-band
systems, namely the homogeneous electron gas [29–31] the
Hubbard chain [32] and hydrogen chain [33]. Recent
calculations of a multiband Hubbard model [34] used an
unfolding procedure [35] with twisted boundary conditions
to derive a continuous band structure from the discrete set
of natural occupation numbers and orbitals obtained from
exact diagonalization. It was found that when there is a
disparity in the strength of interactions in bands of different
orbital character one can have simultaneously a set of
strongly correlated bands satisfying flower ≤ fnk ≤ fupper
and another set with occupation numbers very close to 0
and 1. This situation might arise, for instance, in transition
metal-bearing oxides, where bands with predominantly
transition metal d-orbital character experience a stronger
Hubbard repulsion. In general, it might be necessary to

carry out multiple self-consistent calculations with different
partitions to find the variational minimum.
Given the above choice of partition, our theory embeds a

set of natural Bloch orbital bands in an environment made
up of all remaining bands. This is the crux of our approach
and distinguishes it from all other embedding theories,
most of which rely on a real-space partition. Preserving
translational symmetry by keeping entire bands intact in the
correlated subspace is the key to reliably calculating
topological invariants and, in turn, topological phase
diagrams, which depend on nonlocal correlations beyond
those confined within a real-space fragment. To see the
effect of nonlocal correlations, in Fig. 1 we compare the
phase diagram of the half filled ionic Hubbard model Ĥ ¼P

iσ½−tc†iσciþ1σ þ H:c:þ ð−1ÞiΔc†iσciσ� þ
P

i Un̂i↑n̂i↓ cal-
culated by several methods: mean-field theory (MF), a
renormalization group (RG) method applied to the boson-
ized Hamiltonian [36], density matrix embedding theory
(DMET) [8], and exact diagonalization (ED) extrapolated
to the thermodynamic limit using data from periodic 8-,
10-, and 12-site models following the approach in
Ref. [37]. In our DMET implementation with a two-site
embedding fragment and spin-symmetry preserving inter-
acting bath [38], the phase boundary calculated from the
polarization of the band electrons is overestimated; i.e., the
band insulator (BI) to Mott insulator (MI) transition occurs
at a higherU than in the exact result. This demonstrates that
nonlocal correlations can be important even when a model
contains only local (Hubbard) interactions.
A Schrödinger-like equation for the marginal factor is

derived by inserting cS0D0 ¼ χD0ΦS0jD0 into the original
Schrödinger equation with Hamiltonian Ĥ, multiplying
on the left by Φ�

SjD, and summing over S and S0 to obtain

X
D0

HDD0χD0 ¼ EχD; ð5Þ

FIG. 1. Phase diagram of the half filled ionic Hubbard model.
The phase boundary between BI and MI phases from MF theory
(blue), bosonizationþ RG (green) from Ref. [36], DMET (red),
and ED (black); dashed line extrapolates to the homogeneous
model; hopping t ¼ 1 eV.
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where

HDD0 ¼
X
SS0

Φ�
SjDHSD;S0D0ΦS0jD0 ð6Þ

will be referred to as the embedding Hamiltonian. The
factorHSD;S0D0 ¼ hSDjĤjS0D0i, which can be broken down
into one- and two-body contributions, induces charge
fluctuations between S andD subspaces. Despite its simple
appearance, the Hamiltonian in Eq. (6) is actually quite
unusual in that it couples many-body configurations with
vastly different particle number, spin, etc.
The next step would be to derive the equation for the

conditional factor ΦSjD, which is needed to explicitly
construct HDD0 . However, solving the coupled equations
for χ andΦSjD in their full complexity would be tantamount
to solving the original Schrödinger equation. Thus, we seek
an alternative path that will determine HDD0 as well as the
strongly and weakly correlated orbitals self-consistently. To
obtain a scheme that can be applied to real materials, we
couple Eq. (5) to the following generalized Kohn-Sham
(GKS) equation:

�
p̂2

2m
þ v̂ext þ v̂hxc þ ŵhxc

�
jψnki ¼ ϵnkjψnki; ð7Þ

where v̂hxc ¼ v̂hxc½n;ψdk; χ� denotes a scalar multiplicative
potential and ŵhxc½n;ψdk; χ� is a nonlocal operator act-
ing only in the subspace of strongly correlated natural
orbitals ψdk ∈ D. Both v̂hxc and ŵhxc are functionals of the
electronic density nðrÞ, ψdkðrÞ, and χD. The Hamiltonian
matrix elements HDD0 are similarly functionals of nðrÞ by
virtue of the Hohenberg-Kohn theorem [39]. The GKS
equation can be derived by making the energy stationary
with respect to variations of nðrÞ and ψdk [34].
The density is determined in a nonstandard way as

nðrÞ ¼
X
nkσ∈S

fnkjψnkσðrÞj2 þ
X

dkσ∈D
fdkjψdkσðrÞj2; ð8Þ

with fractional strongly correlated occupation numbers
determined from the marginal factor according to fdk ¼
hχjc†dkσcdkσjχi. The weakly correlated orbitals ψnk ∈ S
have occupation numbers 0 and 1, with the possible
exception of orbitals with energies equal to the chemical
potential. The coupling to the marginal equation enters
implicitly through nðrÞ, as well as the χ dependence of
vhxcðrÞ ¼ δEhxc=δnðrÞjϕdk

and the matrix elements

hψd0k0 jŵhxcjψdki ¼
hψd0k0 j δEhxc

δψ�
dk
ij
n
− h δEhxc

δψd0k0
jψdkijn

fdk − fd0k0
; ð9Þ

where the energy has been partitioned as E ¼ Ts;e þR
vðrÞnðrÞdrþ Ehxc with an ensemble kinetic energy

functional Ts;e defined through the constrained search
[40] over ensembles of Slater determinants ρs.
So far, no approximations have been made. Solving

Eqs. (5) and (7) self-consistently would yield the exact
nðrÞ, ψdkðrÞ, and χD. To have a practical scheme, we need
to specify functional approximations for vhxcðrÞ, ŵhxc, and
HDD0 . For this purpose, we introduce the following
approximation, which we call the Aufbau approximation,
to define the conditional amplitude ΦSjD. Namely, for each
configuration jDiwe define the Slater determinant jSAufbaui
built from the NS ¼ N − ND lowest energy weakly corre-
lated orbitals subject to the conditions that (i) the Ŝz
eigenvalues satisfy MS þMD ¼ M and (ii) the quasimo-
mentum eigenvalues satisfy KD þKS ¼ K, where M and
K are the quantum numbers of jΨi (additional symmetries
could also be imposed at this stage). Since the multi-index
D uniquely determines S if the weakly correlated orbitals
are nondegenerate, assumed here for simplicity, there exists
a function SAufbauðDÞ. Thus, we define

ΦSjD ¼
�
1 if S ¼ SAufbauðDÞ
0 otherwise

: ð10Þ

Since jSAufbaui is a Slater determinant of Kohn-Sham-like
orbitals, Eq. (10) allows us to construct HDD0 as well as the
total energy as implicit functionals of nðrÞ. Thus, for any
given choice of approximate local potential v̂hxc, we have
specified an approximation that can be applied to real
materials without further functional development.
Although solving the many-body Schrödinger equation

in Eq. (5) remains a challenging task, especially in higher
dimensions, it is worth emphasizing that the EF method has
simplified the original problem to a degree that established
many-body techniques can be applied, while retaining the
coupling to all remaining electronic degrees of freedom of
the solid.
Before pursuing calculations of topological phases in

real materials, it is desirable to test the theory in a case
where it can be compared with benchmark calculations. To
this end, we calculate the topological phase diagram of a
multiband ionic Hubbard model, comprising two s bands
and two d bands,

Ĥs ¼ −
X
iσ

½ts;iiþ1ðξÞc†iσciþ1σ þ H:c:� þ
X
iσ

ϵs;ic
†
iσciσ;

Ĥd ¼ −
X
iσ

½td;iiþ1ðξÞd†iσdiþ1σ þ H:c:� þ
X
iσ

ϵd;id
†
iσdiσ

þ U
X
i

n̂d;i↑n̂d;i↓: ð11Þ

To study the behavior of bands with vastly disparate
interactions, we take the s electrons to be noninteracting.
The hopping amplitudes depend on the sublattice displace-
ment ξ according to ts;iiþ1 ¼ ts1 ¼ t0 − 2gsξ for i ¼ odd
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and ts;iiþ1 ¼ ts2 ¼ t0 þ 2gsξ for i ¼ even and similarly for
td;iiþ1. The on site potentials are staggered, i.e., ϵs;i ¼
ð−1ÞiΔs and similarly for ϵd;i. The s and d bands are
coupled by a hopping term

Ĥsd ¼ −tsd
X
iσ

ðc†iσdiþ1σ þ d†iσciþ1σ þ H:c:Þ: ð12Þ

This model has a band insulator to Mott insulator transition
at a critical value of the Hubbard parameterU, similar to the
single band model [37,41–54].
We also include a crystal field term Δ̂sd ¼

Δsd
P

iσðnd;iσ − ns;iσÞ to break particle-hole symmetry.
By varying Δsd, we control the filling of the d band and
study the effect of band filling on the quantum phase
transition. We are effectively using the weakly correlated
“spectator” band to dope the strongly correlated band
(reminiscent of carrier doping in cuprate superconductors
[55]). Previous studies involving variable band filling in
multiband Hubbard models, e.g., in connection with the
orbital-selective Mott transition [56–61] and strongly
correlated superconductivity [62], have tended to treat
higher symmetry scenarios with the same value of intra-
bandU for all bands and additional interband and exchange
interactions.
We first discuss the model within mean-field theory.

Figures 2(a)–(c) depict the interaction-driven transition
from paramagnetic to antiferromagnetic phase upon vary-
ing U for Δsd ¼ 0 eV. Fig. 2(a) [Figs. 2(b) and 2(c)] shows
the paramagnetic (antiferromagnetic) phase just below
(above) the critical value Uc ¼ 8.28 eV, determined by
the closing of the d-orbital up spin gap [Fig. 2(b)]. A
different scenario is found for the crystal field-driven
transition [Figs. 2(d)–2(f)] induced by varying Δsd for
U ¼ 6.6 eV. Here the gap closing that defines the critical
value Δsd;c ¼ 1.4 eV occurs between bands of different
orbital character [Fig. 2(e)], since the crystal field breaks
particle-hole symmetry.
Figure 3 shows the topological phase diagram obtained

in the Aufbau approximation as a function of U and Δsd.
The Aufbau result (solid black curve) displays a BI-MI
transition as either U or Δsd is increased. The phase
boundaries are determined from jumps of π in the marginal
geometric phase γχ ¼

R
2π
0 ihχj∂αχidα (see Supplemental

Material [63]). The phase transitions signal a discontinuous
change in the macroscopic polarization P ¼ −ðe=2πÞγ,
which is a topological invariant quantized to P ¼ 0 or
e
2
mod e by the parity symmetry of the model. Similar

behavior is well known in single-orbital ionic Hubbard
models in one and two dimensions [37,42,44]. We use a
small symmetry-breaking dimerization ξ ¼ 5 × 10−5, and
the Born–von Kármán cells used in our calculations are
too small to see an intermediate bond-ordered phase
[45,48,53]. The Aufbau result agrees well with the one

obtained by numerical ED in a truncated Hilbert space (red
dots in Fig. 3) [63], demonstrating the viability of the
approximation.

FIG. 2. (a)–(c) Interaction-driven transition in the mean-field
band structure for increasingU and fixedΔsd ¼ 0. (d)–(f) Crystal
field-driven transition for increasing Δsd and fixed U ¼ 6.6 eV.
In both cases, ts ¼ td ¼ 3.5, Δs ¼ 1.6, Δd ¼ 2.0, ξ ¼ 5 × 10−5,
and tsd ¼ 0.8; all in eV. Color scale (blue to red) indicates the
orbital character (s to d).

FIG. 3. Phase diagram of the two-orbital Hubbard model as a
function of the Hubbard and crystal field parameters U and Δsd.
Boundaries between BI and MI phases are calculated with the
Aufbau approximation (solid black curve), ED (red dots), and the
MF theory (dashed gray curves) for ts ¼ td ¼ 3.5, Δs ¼ 1.6,
Δd ¼ 2.0, ξ ¼ 5 × 10−5, and tsd ¼ 0.8 (all in eV).
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The BI-MI transition is reflected in the paramagnetic to
antiferromagneticmean-field phase boundaries (dashed gray
curves inFig. 3),which roughly follow theBI toMI transition
of the correlated solution. However, a second symmetry-
restoring transition is reached whenΔsd is further increased.
For U ¼ 0, the crystal field-driven transition occurs at
exactly Δsd ¼ 1

2
ðΔs þ ΔdÞ ¼ 1.80 eV, as correctly repro-

duced in the mean-field solution. The intercept of the phase
transition line deviates slightly from 1.80 eV in the Aufbau
approximation, which does not become exact in the limit
U → 0 because it does not capture all tsd-induced
interband charge fluctuations. At the symmetry-breaking
transition, the geometric phase of the d-orbital valence
band associated with one spin, e.g., the down spin,
γd↓ ¼ R π=a

−π=a ihudk↓j∂kudk↓idk, jumps from π to 0 as Δsd
(orU) is increased. At the symmetry-restoring transition, the
geometric phase of the opposite spin γd↑ also jumps from
π to 0. No such second transition was observed in either the
exact diagonalization or Aufbau solutions in the investi-
gated range.
The change in the topological invariant from the BI to MI

phase for increasing Δsd coincides with a change in the
topology of the natural occupation number bands as shown
in Fig. 4. The occupation number bands develop a crossing
at the zone boundary. We have described this phenomenon
in the Rice-Mele-Hubbard model [66], and it is similar to
the purity-gap closing studied in the quench dynamics of
ultracold atoms [67]. With respect to other descriptors of
the transition, the natural orbital band structure and its
topological invariants have the virtues that they build in the
crystal symmetries and can be straightforwardly extended
to probe real-time dynamics.
The solution of the embedding Schrödinger equation,

where different marginal charge states are combined into a
single state vector jχi, is fundamentally different from the
solution of an effective d-electron Hamiltonian with band
filling controlled by a chemical potential. While in the
former case the phase boundaries can be detected by
discontinuous π jumps, the mean-field geometric phase of
the latter is blind to the paramagnetic-antiferromagnetic
transition [63]. This underscores the usefulness of an EF
approach built on pure states for the detection of topological

phase transitions. The approach also yields accurate energies
and local observables.
In summary, a novel embedding theory based on a Fock-

space factorization has been found to reproduce the
topological phase diagram of a strongly correlated multi-
band system. Calculations employing the proposed Aufbau
approximation can be expected to aid the ongoing search
for novel strongly correlated materials.

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No. ERC-2017-AdG-788890).

Note added.—We recently became aware of related work
by Lacombe and Maitra that also develops an exact
factorization-based embedding method [68].
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