
Edge Contact Angle, Capillary Condensation, and Meniscus Depinning

Alexandr Malijevský
Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic

and The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Department of Molecular Modelling,
165 02 Prague, Czech Republic

Andrew O. Parry
Department of Mathematics, Imperial College London, London SW7 2BZ, United Kingdom

(Received 18 May 2021; accepted 12 August 2021; published 8 September 2021)

We study the phase equilibria of a fluid confined in an open capillary slit formed when a wall of finite
length H is brought a distance L away from a second macroscopic surface. This system shows rich phase
equilibria arising from the competition between two different types of capillary condensation, corner filling
and meniscus depinning transitions depending on the value of the aspect ratio a ¼ L=H. For long
capillaries, with a < 2=π, the condensation is of type I involving menisci which are pinned at the top edges
at the ends of the capillary characterized by an edge contact angle. For intermediate capillaries, with
2=π < a < 1, depending on the value of the contact angle the condensation may be of type I or of type II, in
which the menisci overspill into the reservoir and there is no pinning. For short capillaries, with a > 1,
condensation is always of type II. In all regimes, capillary condensation is completely suppressed for
sufficiently large contact angles. We show that there is an additional continuous phase transition in the
condensed liquidlike phase, associated with the depinning of each meniscus as they round the upper open
edges of the slit. Finite-size scaling predictions are developed for these transitions and phase boundaries
which connect with the fluctuation theories of wetting and filling transitions. We test several of our
predictions using a fully microscopic density functional theory which allows us to study the two types of
capillary condensation and its suppression at the molecular level.
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The contact angle θ is central to the study of fluid
adsorption and plays a crucial role in a number of surface
phase transitions where it specifies the phase boundary
[1–3]. For example, it vanishes at a wetting transition [4,5]
and also determines that a right-angle corner is filled by
liquid when θ < π=4 [6,7]. It also appears in the macro-
scopic Kelvin equation for the pressure shift from satu-
ration, δpcc ¼ 2γ cos θ=L, where γ is the interfacial tension,
at which a vapor confined between two identical plates
separated by a distance L, condenses to liquid [8,9]. If the
walls are materially different, this generalizes immediately
to δpcc ¼ γðcos θ1 þ cos θ2Þ=L, with θ1 and θ2 the corre-
sponding contact angles. There are well-known cases
where the equilibrium value of θ is modified by interfacial
pinning, e.g., on rough surfaces where the modification is
described by Wenzel’s law [10] and is believed to underline
the phenomena of contact angle hysteresis [11]. Interfacial
pinning is also important for condensation in open capil-
laries. In particular, recent studies of fluid equilibria in a slit
of finite length have highlighted the role played by an edge
contact anglewhich characterizes the menisci pinned at the
ends, and which replaces θ in the Kelvin equation [12–14].
In this Letter, we study a fluid confined in a slit formed

when a wall of length H is brought near a second, infinite

surface. We show that due to a combination of interfacial
phenomena, the phase behavior is extremely rich. In
particular, there are two types of capillary condensation
as well as a continuous interfacial transition which has not
been identified previously. At all these phase boundaries,
an equilibrium edge contact angle plays a crucial role. The
possible phase diagrams fall into three universal classes
depending on the aspect ratio a ¼ L=H. The rounding of
these transitions, occurring at the mesoscopic scale, is
linked to the fluctuation theories of wetting and filling
transitions although several aspects are observable at the
truly microscopic level.
We begin with macroscopics and suppose that our

system is in contact with a reservoir of gas at pressure p
at a temperature T below that of the bulk critical point Tc.
Translational invariance is assumed along the slit, and
gravity is neglected which is valid, for molecular fluids,
provided L is sub mm [10]. We anticipate that as p is
increased, the fluid inside the capillary condenses to liquid
before bulk saturation psat is reached. The liquidlike phase
is characterized by two circular menisci, which must be
located near the ends. Since the bottom wall is infinite, the
menisci meet it at Young’s contact angle θ but there are
two possibilities for the upper part of each menisci. For
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example, they may be pinned at the edges, making an angle
θe with respect to the horizontal [see Fig. 1(a)]. This edge
contact angle is pressure dependent for any capillary-liquid
phase (CL) but takes a specific value θcce at the first-order
transition where it coexists with the capillary-gas phase
(CG); we refer to this as type I capillary condensation.
Alternatively, the menisci may be unpinned, sitting outside
the open ends touching the walls with the contact angle θ
[see Fig. 1(b)]; we refer to this as type II capillary
condensation.
The edge contact angle of any CL is determined

geometrically by L=R ¼ cos θ þ cos θe where R ¼ γ=δp
is the Laplace radius and δp is the pressure difference
across the meniscus which is approximately the deviation
from psat. The maximum value of the edge contact angle is
θmax
e ¼ θ þ π=2, which is when the upper part of the
menisci meet the vertical walls at Young’s contact angle
and are therefore unpinned. Balancing the grand potentials
of the CG and CL phases taking into account only the
volume and surface contributions shows that type I capil-
lary condensation occurs when

δpI
cc ¼

γ

L
ðcos θ þ cos θcce Þ; ð1Þ

where θcce is determined implicitly from

cos2 θ ¼ cos2 θcce þ a
π − θ − θcce þ sinðθ þ θcce Þ

1þ a tanðθcce −θ
2
Þ : ð2Þ

The modified Kelvin equation (1) is therefore of the same
form as that for an infinite slit with two materially distinct
walls. When the slit is infinitely long we recover
the standard Kelvin equation, since θcce ¼ θ. As we shorten
the capillary, the value of θcce increases, and the condensa-
tion occurs closer to psat. The loci of type I condensation
terminates in one of two ways. It ends if θcce ¼ θmax

e
when it becomes of type II and no longer involves pinned
menisci. Again, balancing the macroscopic contributions to
the grand potentials of the CG and CL phases determines
that this type of condensation occurs at the pressure
shift

δpII
cc ¼

2γ

L

a½cos θ − sin θ þ ðθ − π
4
Þ sec θ�

a − 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2 − 2aðπ
4
sec2θ − tan θÞ

q : ð3Þ

The numerator is positive only for θ < π=4 implying that
type II condensation can only occur in the complete corner
filling regime. Alternatively, type I condensation ends
when θcce ¼ π − θ, for which δpI

cc ¼ 0. From Eq. (2) it
follows that this occurs when the aspect ratio is a0 ¼ cot θ.
We find it remarkable that the capillary condensation at this
terminus of type I condensation mimics the phase separa-
tion in an infinite slit where the walls are materially
different with opposing wetting properties, i.e., θ2 ¼
π − θ1 [15]. Capillary condensation is suppressed for
shorter capillaries.
We can summarize these results using simple phase

diagrams, as shown in Fig. 2. We begin by classifying the
capillaries according to their aspect ratio:
Long capillaries.—For a < 2=π, only type I condensa-

tion occurs up to a maximum value of the contact angle
θ0 ¼ cot−1 a. For θ ≥ θ0 the gas inside the slit and the
surrounding reservoir both condense to liquid at psat. In
addition, there is a line of meniscus depinning transitions
when

δpmd ¼
γðcos θ − sin θÞ

L
; ð4Þ

FIG. 1. Schematic illustration of two possible CL configura-
tions in which the menisci (a) are pinned at the top corners with
edge contact angle θe or (b) spill out of the slit meeting the walls
with Young’s contact angle θ.

FIG. 2. Macroscopic phase diagrams for long, intermediate, and short capillaries showing the location of type I and type II
condensation (red line), the meniscus depinning transition (dashed line), and the suppression of capillary condensation for different
values of the aspect ratio. Here δ̃p ¼ Lδp=ð2γÞ is a dimensionless measure of the deviation from bulk saturation.
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extending to the corner filling phase boundary θ ¼ π=4. On
increasing the pressure from δpI

cc the edge contact angle
increases until it reaches θe ¼ θmax

e , at which point the
meniscus depins. This is shown as the dashed line in
Fig. 2(a) and separates the regimes where the upper
parts of the menisci are pinned or unpinned. Meniscus
depinning is a continuous phase transition which is third-
order for complete wetting and second-order for partial
wetting. For example, for complete wetting, the third
derivative of the grand potential, ∂3Ω=∂R3, has a dis-
continuity γ=L2 associated with a singularity in the
adsorption Γsing ∝ ðδpmd − δpÞ2, which arises from the
different qualitative structure of the meniscus in the pinned
and the unpinned regimes. Finally the (blue) line,
0 < θ < π=4, at bulk saturation represents the line of
complete corner filling. On approaching this line the
adsorption diverges as Γ ∝ R2 due to the continuous growth
of two menisci which have spilled out into the right-angle
corners at each end of the slit.
Intermediate capillaries.—If 2=π < a < 1, then conden-

sation is of type II for 0 < θ < θp and type I for
θp < θ < θ0. The crossover occurs when a ¼ cosð2θpÞ=
ðπ=2 − 2θpÞ, at which θcce ¼ θmax

e , i.e., where meniscus
depinning meets capillary condensation. Meniscus depin-
ning only occurs in the range θp < θ < π=4 since for
smaller contact angles the CL is metastable. As the aspect
ratio approaches unity both θp and θ0 approach π=4 (from
different sides) and the lines of type I condensation and
meniscus depinning vanish.
Short capillaries.—If the aspect ratio a > 1 only type II

capillary condensation occurs up to the corner filling phase
boundary with θ0 ¼ π=4 beyond which capillary conden-
sation is suppressed.
An alternative way of representing these macroscopic

predictions is in terms of phase diagrams which are

qualitatively different for the regimes corresponding to
complete corner filling (θ < π=4) and partial corner filling
(θ > π=4) (see Fig. 3 and the caption for details).
Some of these macroscopic predictions are slightly

modified when we allow for thermal fluctuations. Since
the capillary is pseudo one-dimensional all capillary con-
densation transitions are rounded occurring over a pressure
range Δpcc ∝ expð−βγLHÞ where the factor γLH is the
approximate free-energy cost of phase separating the CG
and CL along the capillary [16]. Such rounding is only of
significance in the near vicinity of the (pseudo) capillary
critical temperature which itself occurs when the smallest
of the dimensions L or H is of order of the bulk correlation
length. The meniscus depinning transition is also rounded.
We consider the case of complete wetting first where the
rounding is largest. At a macroscopic level meniscus
depinning occurs when R ¼ L, i.e., when a quarter circular
meniscus just fits into the open ends of the capillary.
However, this ignores the presence of the complete wetting
layers along the bottom and vertical walls which are
characterized by a thickness lπ and also a parallel corre-
lation length ξk arising from thermal interfacial fluctuations
[2]. These length scales soften the effective slit width, with
depinning occurring when R ≈ L − lπ � ξk. Allowing for
the pressure dependence of the parallel correlation length,
ξk ≈ δp−νcok , implies that for complete wetting the meniscus
depinning transition is rounded over the pressure range
Δpmd ∝ Lνcok −2 and the type I-II crossover over the aspect
ratio range Δap ∝ Lνcok −1. For systems with dispersion
forces, νcok ¼ 2=3 [17], implying that Δpmd ∝ L−ð4=3Þ

and Δap ∝ L−ð1=3Þ. Similar considerations apply for partial
wetting; however, in this case ξk remains finite leading to
the universal finite-size scaling predictions Δpmd ∝ L−2

and Δap ∝ L−1. The macroscopic predictions are also

FIG. 3. Macroscopic phase diagrams for complete and partial corner filling. For θ < π=4 (a) both type I and type II condensation (red
line) occur in addition to meniscus depinning (dashed line) and complete corner filling (blue line). The type I-II crossover occurs at
ap ¼ cosð2θÞ=ðπ=2 − 2θÞ. As θ increases to π=4 the lines of meniscus depinning and type II condensation merge into the saturation
curve and disappear. For θ > π=4 (b) only type I condensation exists and is suppressed when the aspect ratio is larger than a0 ¼ cot θ.
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modified slightly if the corner filling transition at θ ¼ π=4
is continuous. Macroscopically, the loci of the meniscus
depinning transitions (for a < 1) and line of type II
condensation (for a > 1) end exactly at θ ¼ π=4. If the
right-angle corners show continuous corner filling, how-
ever, these transitions end when θ − π=4 ∝ L−1=βw . Here,
βw is the critical exponent describing the thickness,
lw ∝ ðθ − ðπ=4ÞÞ−βw , of the adsorbed layer of liquid at a
right-angle corner at p ¼ psat [18], i.e., a meniscus must be
present whenever the mesoscopic thickness of the adsorbed
liquid is greater than the slit width. For systems with
dispersion forces this implies that meniscus depinning
slightly extends into the partial filling regime until
θ − ðπ=4Þ ∝ L−2.
We have compared our predictions with a microscopic

density functional theory (DFT) model which allows us to
study these phenomena at the molecular scale [19]. We
begin by showing that for complete wetting, the capillary
condensation is type I and type II for small and large aspect
ratios, respectively. We employ the same DFT model that
we have used recently [13] which combines Rosenfeld’s
fundamental measure theory [20] accurately describing any
packing effects, with a mean-field treatment of the attrac-
tive part of the interatomic interaction modeled by a
truncated Lennard-Jones (LJ) potential. See the
Supplementary Material for details [21]. Actually, we flip
the scenario and consider walls which have a purely long-
ranged repulsive component, which ensures that they are
completely dry with contact angle θ ¼ π, focusing on the
character of the capillary evaporation as the pressure is
reduced to psat (that is the roles played by the CG and CL
phases are simply reversed). We have determined the line of
capillary condensation over a wide range of the aspect ratio
for a microscopic slit separation L ¼ 10σ, with σ the
molecular diameter [21]. Figures 4(a) and 4(b) show the

coexisting CL and CG phases for aspect ratio a ¼ 1=2,
illustrating type I condensation, while Figs. 4(c) and 4(d)
show the coexisting phases for a ¼ 1, illustrating type II
condensation.
Finally, we show that for θ > π=4 condensation is only

of type I and is suppressed for aspect ratios a > a0, which
we compare with the theoretical prediction a0 ¼ cot θ. We
add an attractive part to the substrate-fluid potential in order
to decrease the contact angle assuming the walls are made
of atoms interacting with the fluid via a full LJ potential.
We set the temperature T ¼ 0.85Tc, for which the contact
angle θ ≈ 53° [23]. As predicted, the phase diagram shows
only a line of type I capillary condensation which termi-
nates at a0 ≈ 0.78, which is extremely close to the macro-
scopic prediction a0 ≈ 0.75 (Fig. 5). Representative density
profiles of the coexisting states (for H ¼ 15σ), for which
a ¼ 2=3, are also shown and illustrate how the meniscus
pinning is mimicking the properties of condensation
between two walls with opposing wetting properties,
i.e, θcce ≈ π − θ.
In summary, we have shown that in an open slit geometry

the capillary condensation may occur in two different ways
involving pinned or unpinned menisci separated by a
continuous meniscus depinning transition. The phase
boundaries are determined by the values of an edge contact
angle somewhat analogous to how the Young contact angle
determines the phase boundary for wetting and filling
transitions. The resulting phase diagrams fall into one of
three possible universal classes depending on the slit aspect
ratio. The richness of the possible phase behavior emerges
from the interplay between different interfacial phenomena
and are connected to the fluctuation theory of fundamental
surface phase transitions. The distinction between type I
and type II condensation and the presence of meniscus
depinning transitions will occur in other geometries which

FIG. 4. Type I and type II condensation in a microscopic slit with repulsive walls and width L ¼ 10σ. The plots (a) and (b) show the
coexisting CL and CG phases for aspect ratio a ¼ 1=2, while (c) and (d) are the coexisting CL and CG phases for a ¼ 1.
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are certainly experimentally accessible, for example, when
a vertical cylinder is brought into close contact with a flat
surface. The rounding of the meniscus transition considered
here arises due to the thermal fluctuations of the adsorbed
wetting layers and occurs for even perfectly sharp geom-
etries. It would also be interesting to understand how
surface roughness affects the edge contact angle and the
meniscus depinning transition, which may well connect
with the phenomena of contact angle hysteresis. Including
gravity may also introduce interesting new effects asso-
ciated with capillary emptying transitions [24,25]. Finally,
the equilibrium phase transitions considered here are also a
prerequisite for understanding the dynamics of meniscus
depinning which may be studied, for example, using
dynamical DFT or simulation methods similar to those
described in [26].

This work was financially supported by the Czech
Science Foundation, Project No. GA 20-14547S.

[1] J. S. Rowlinson and B. Widom, Molecular Theory of
Capillarity (Oxford University Press, Oxford, 1982).

[2] S. Dietrich, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic Press,
New York, 1988), Vol. 12.

[3] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley,
Rev. Mod. Phys. 81, 739 (2009).

[4] J. W. Cahn, J. Chem. Phys. 66, 3667 (1977).
[5] C. Ebner and W. F. Saam, Phys. Rev. Lett. 38, 1486 (1977).
[6] E. H. Hauge, Phys. Rev. A 46, 4994 (1992).
[7] K. Rejmer, S. Dietrich, and M. Napirkówski, Phys. Rev. E

60, 4027 (1999).
[8] S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and

Porosity (Academic, New York, 1982).
[9] R. Evans and U. Marini Bettolo Marconni, Chem. Phys.

Lett. 114, 415 (1985).
[10] P. de Gennes, F. Brochard-Wyart, and D. Quèrè, Capillarity
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