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Here we introduce the concept of the twinning field—a driving electromagnetic pulse that induces an
identical optical response from two distinct materials. We show that for a large class of pairs of generic
many-body systems, a twinning field which renders the systems optically indistinguishable exists. The
conditions under which this field exists are derived, and this analysis is supplemented by numerical
calculations of twinning fields for both the 1D Fermi-Hubbard model, and tight-binding models of
graphene and hexagonal boron nitride. The existence of twinning fields may lead to new research directions
in nonlinear optics, materials science, and quantum technologies.
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Introduction.—As our understanding of the physical
world has progressed to mastery over it, it has become
apparent that the qualities which define a material at
equilibrium may be modified under driving. This phe-
nomenon underpins both quantum simulation [1] and
Floquet engineering [2—4]. One of the principal goals of
quantum control theory [5] is the specification of the
driving fields necessary either to steer a system to some
desired state [6—11], or fulfill a prespecified condition on its
expectations [12,13].

Using tracking quantum control [14-21], recent work
has demonstrated that almost arbitrary control over the
optical response of a large class of solid-state systems can
be achieved [22,23]. One consequence of this is that two
specially tailored driving fields will induce an identical
response from two distinct systems. Given the essential
malleability of quantum systems under driving, one might
ask whether it is possible to fulfil the stronger condition of
obtaining identical responses using the same driving field
on each system. Put differently, do there exist fields for
which a pair of systems’ response are indistinguishable?

Consider two distinct systems |y) and |y,), with an
identical control field impinging on each of them (see
Fig. 1). Each system will generate an optical response
JO (1), and if JV(r) = J@(¢) for all times f, then the
driving field is what we term a “twinning field,” and the
systems are optically indistinguishable.

In the regime of linear response, this may initially appear
trivial, as many systems possess extremely similar absorp-
tion and emission spectra over a broad range of frequencies
(e.g., large organic molecules [24]). Indeed, such is the
closeness of these systems’ response that quantum control
[25-31] (including tracking control [32]) must be exploited
to accurately detect these systems. Of course, similar is not
identical, and purely linear response would require iden-
tical susceptibilities for identical responses. In general,
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however, materials also have a nonlinear component to
differentiate them (see, e.g., [33]). In fact many important
phenomena—e.g., high harmonic generation [34-36], the
workhorse of attosecond physics [37-39]—explicitly rely
on optical nonlinearities [40].

For this reason, true optical indistinguishability must be
considered in the context of the nonlinear response that
arises in a fully quantum treatment of materials. Some
preliminary hints of this indistinguishability have been
observed experimentally, specifically in the nonuniqueness
of the parametrization of second-order nonlinear spectra
[41]. To date, however, a theoretical justification for such
results has been lacking. In this Letter we address this issue
and present a framework for achieving driven indistinguish-
ability. The main result is a demonstration that for any pair
of generic many-electron systems on a lattice, there always
exists a twinning field which will elicit an identical
response from each system. Furthermore, the conditions
under which this field is unique are established. This
framework is then extended by deriving a general twinning
field which renders an arbitrary expectation identical
between systems. Finally, we discuss the physical impli-
cations of twinning fields, and their potential utility.
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FIG. 1. Ordinarily, distinct systems will have different re-
sponses to the same driving field. A twinning field relates a pair
of systems as the field under which the optical response J*) (1) of
each system is identical.
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Results.—Here we outline the derivation of the twinning
field for 1D systems, while the more general case is
discussed in the Supplemental Material [42] which includes
Refs. [43-45]. Here we consider two many-electron sys-
tems on a lattice, labeled by k = 1, 2. Each has a potential
U™ due to electron-electron interactions. Both systems are
excited by an identical laser pulse, described under the
dipole approximation by the Peierls phase ®(r) [46,47].
Such systems’ evolution will then be determined by the
Hamiltonian (in atomic units) [23,48]:

O = A S (e ey, ) + 00, (1)

jo

where ¢, is the fermionic annhilation operator (acting on
the appropriate system) for site j and spin o, satisfying the
anticommutation relation {?:;5, Cjo} = 0,50y, While ték> is
the hopping parameter describing the kinetic energy of the
electrons.

Consider a typical example of an optically driven
current. The current operator J ®) js defined from a
continuity equation for the electron density [22,23].
Provided all number operators 7, = 6;6
U™, each system’s current operator has the form [49]

¢, commute with

J0 (1) = —iatg"> (e ®Wel 210, ~He),  (2)

j.c

where al¥) is the lattice constant. It is important to note
that the current expectation J®)(r) = (y(£)| 7% (£) |y (1))
depends only implicitly on U through the evolution of
lwi (1)), significantly simplifying expressions.

Having dispensed with this preamble, we come to our
main topic of investigation. For two systems |y ) and |w»)
with potentials U0 and U (2>, does there exist a twinning
field ®,(¢) such that J(V) () = J@)(¢), making the response
of one system indistinguishable from the other?

To establish the existence of this field, we first express
the nearest-neighbor expectation of each system in a polar
form:

k= Zéjﬂaﬂrlm 3)
j.c

K(yi) = (0Kl (1) = Ry )e?W. (4)

Note that in both this and later expressions, the argument
v, indicates that the expression is a functional of
lwi) = |wi(2)). We emphasise that this functional will
have a well-defined value for any state that has been
obtained through evolution under the Hamiltonian given in
Eq. (1). Using this, we may express the response expect-
ation J® directly as

JO(1) = —iatgR () (=@ _ il@(0-00u)])
= —2atoR(yy) sin[®(1) — O(yy)]. (5)
It is straightforward to equate the currents J()(¢) and

J®)(t) and obtain an expression for the twinning field ®, in
terms of the expectations of the two systems:

®(1) = arctan [E(y1, o)) (6)

AR(yy) sin[0(y1)] = R(y>) sin[0(y )]
AR (yry) cos[O(y1)] — R(yr2) cos[O(y)]”

Eyriwn) = (7)

where 1 = {[aV1{"]/ [a(z)t(()z)}}. Critically, in this 1D case
one is able to obtain a closed form for @,(¢), such that the
existence of this field can be assessed purely by considering
its right-hand side. Given both the range and domain of
arctan extends over the reals and &(yy,y,) is real by
definition (and has a definite value for any pair of states),
we can immediately conclude that a twinning field between
any two systems described by Eq. (1) always exists.

An important caveat to this statement is that the predicted
twinning field may be identically zero depending on the
initial states of the twinned systems. For example, if we
attempt to twin two systems of noninteracting electrons
U K — 0), then K commutes with the Hamiltonian and
K(yy) is constant. If the systems are evolved from their
ground state, 8(y;) = 0, and by Eq. (6), ®,.(¢) = 0. This
scenario is consistent with the impossibility of twinning
fields in linear optics, and can be avoided by having at least
one of the system pair have a nonzero potential and hence a
nonlinear response. Furthermore, while an equation for @,
can still be obtained in higher dimensions, in general it will
not be of a closed form, and therefore a twinning field is not
guaranteed to exist. The additional requirements for a
twinning field to exist in this scenario are detailed in the
Supplemental Material [42].

lllustrations.—Here we provide examples of twinning
fields for systems described by the Fermi-Hubbard model
of strongly interacting electrons. In this case, each system
has an on-site potential described by [48,49]:

oW = U0y el epel ey (8)
J

where U®) parametrizes the energy of the electron-
electron repulsion, and all equilibrium properties are
determined by the ratio U%)/ ték>. Despite the simplicity
of the potential, this model is rich in nontrivial behavior,
including topological [50,51] and superconducting phases
in 2D [52,53]. The Fermi-Hubbard model is computation-
ally challenging and a complete understanding of its
dynamics is believed to require a quantum computer
[54]. It also exhibits a highly nonlinear optical response
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[49,55,56], and therefore provides a suitable platform for
numerical calculations of twinning fields.

Here we consider an L = 10 site chain with periodic
boundary conditions and an average of one electron per
site. For the sake of simplicity, in both systems we use the
lattice constants a!) = a® = 4 A, with a hopping param-
eter of 7y = t(()]) = tg) =0.52 eV. To avoid the trivial
solution of ®_,(7) = 0, each system (initially in the ground
state) is first pumped by a single cycle of a transform-
limited field. Specifically, an enveloped sine-wave is used
with an amplitude of E; =10 MV/cm and frequency
wy = 32.9 THz. All calculations were performed using
exact diagonalization via the QuSpin PYTHON pack-
age [57,58].

Figure 2 shows examples of calculated twinning fields
and the accompanying responses they generate for several
pairs of systems. These pairs are parametrized by A, using
U = 0.5¢), while U® = U1 4 A. Applying the twin-
ning field calculated at each time, we find the current in
each pair of systems is identical, as expected.

A more concretely physical example is to twin two
commonly studied materials—graphene and hexagonal
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FIG. 2. Top panel: twinning fields and the accompanying
optical response for three pairs of systems, following an initial
pump pulse. Bottom panel: the current resulting from the
application of the twinning field, which is identical in each pair
of systems. In all cases vl = 0.51,, while U® =yl 4 A,
where A is varied for each of the three pairs. a’.u. are atomic units
with energy normalized to ¢.

boron nitride (A-BN). Both of these structures have a
bipartite lattice structure, as shown in Fig. 3. Critically,
that lattice constant for both systems is almost identical,
and can hence be modeled with the identical value
2% = |al"®Y| =25 A [59,60]. This is critical for
the existence of a twinning field, as in higher dimensions
the ability to twin a pair of systems can only be guaranteed
when they share the same lattice structure.

Both materials are well modeled by the tight-binding
approximation [61], with an on-site potential of the same
form as Eq. (8). tf)GR) = t(()h’BN) =2.7¢V, and for the
graphene carbon atoms U, = 0, while for 4-BN Up =
33 eV and Uy = —1.4 eV for boron and nitrogen atoms,
respectively [62,63]. While it is possible to also include
next-to-nearest hopping, the relative strength of this com-
pared to nearest-neighbor hopping is only ~5% [64,65],
and we therefore neglect it for calculational simplicity.
Further information on both the precise Hamiltonian
describing these systems, and the derived twinning
field equations may be found in the Supplemental
Material [42].

Simulations are performed using L = 12 sites with
periodic boundaries, and the systems are again prepared
via the application of a pumping field. In this case, the
polarization of this initial pump is of great consequence,
and in order to generate a physically realizable twinning
field, it must be aligned with one of the nearest neighbor
vectors. Figure 4 shows an example of this, with the initial
pump pulse and subsequent twinning field aligned along
the a, direction.

FIG. 3. Both graphene and 4-BN can be modeled with the tight-
binding approximation set on a hexagonal bipartite lattice,
defined by the positions of the B sublattice atoms relative to
those on the A sublattice. These are characterized by the three
nearest neighbor vectors a;, with each having an angular

separation of 120°, and length 2.5 A.
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FIG. 4. Top panel: twinning field generated after a pump pulse
in the a; /x direction. The symmetry of the lattice guarantees that
the resultant twinning field is also purely in the x direction.
Bottom panel: the overall current J(¢) in the x direction due to
application of the twinning field. As expected, this is identical in
both systems.

Discussion.—We have introduced a nonlinear optical
phenomenon where some pairs of quantum systems have a
twinning field which generates an identical response in
each individual system. In 1D the necessary conditions for
a twinning field to exist are rather general, but in higher
dimensions the two systems must possess a high degree of
similarity in their lattice structures for the existence of a
twinning field to be guaranteed. Conditions for the unique-
ness of this field were derived, and numerical calculations
provided examples of twinning fields in a Fermi-Hubbard
system.

It is instructive to compare optical indistinguishability
with the antihaecceitism [66,67] of quantum particles. The
latter is responsible for both the Fermi-Dirac and Bose-
Einstein distributions [68,69] (as well as the resolution of
Gibbs’ paradox [70,71]), and is an intrinsic and immutable
property of said particles. For this reason it has been
commonly assumed that systems governed by distinct
Hamiltonians will be distinguishable from each other.
Indeed, the effectiveness of spectroscopy is predicated
on the notion that a material can be uniquely identified
from its spectral response [72]. The existence of twinning
fields gives the lie to this assumption, however,

demonstrating that indistinguishability can arise as an
emergent property under driving.

It may be tempting to think of twinning fields purely as
an act of deception, where an unscrupulous salesman could
use the technique to pass off a cheap and nasty material as
something more costly. In fact, the analysis presented here
demonstrates that it is a trick requiring highly specific
conditions to be repeated, and such a fraud can be defeated
by an arbitrary modification to the example driving field.
Indeed, even if the twinning field is nonunique, the field up
to the point that Lipschitz continuity (see [42]) is violated
will be unique. Any field that is distinct from this initial
trajectory will therefore be guaranteed to produce a
response distinguishing the two systems. This has the
important consequence of ensuring that techniques
designed to discriminate between similar systems are well
founded [27,28,32].

Of course, the existence of twinning fields forces one to
consider both their feasibility and wider utility. While the
twinning fields calculated here appear to be rather broad-
band pulses, the rapid improvement in both intensity and
bandwidth of laboratory laser sources [73,74]—combined
with the fact that similarly tailored tracking control
fields can be well approximated by a few distinct frequen-
cies [23]—suggests twinning fields may be experimentally
realizable with current technology. In fact, deep learning
networks have recently been employed to experimentally
determine the driving field required to generate a desired
response in a material, in a manner that is robust to noise
[75]. It is likely that such techniques could be similarly
applied for the practical calculation of twinning fields.

One potential application of these fields is to characterize
the effect of interactions between systems. Applying the
twinning field calculated for a noninteracting pair, it would
be possible to identify the additional current generated by
each system due to its interaction with the other. Twinning
fields may also provide a method for creating alternative
realizations of metamaterials [76] when a specific response
is required. Given a field and a metamaterial’s nearest-
neighbor expectation, Eq. (6) can be used to calculate the
properties of a different material producing the same effect.
Consequently the search for cheaper alternative components
in quantum technologies may be aided by twinning fields.

Naturally, there remain a number of unanswered ques-
tions. For instance, a given twinning field relates a pair of
systems, but is this pair unique? Put differently, are there
triplets, or n-tuplets of systems which exhibit optical
indistinguishability? In the case of a nonunique twinning
field, what are the physical consequences of choosing one
solution over an another? Such questions may merit further
investigation, as understanding these secondary properties
provides both challenges and opportunities to illuminate
the principles upon which driven systems operate.
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