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High-accuracy mass measurements of neutron-deficient Yb isotopes have been performed at TRIUMF
using TITAN’s multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). For the first time, an
MR-TOF-MS was used on line simultaneously as an isobar separator and as a mass spectrometer, extending
the measurements to two isotopes further away from stability than otherwise possible. The ground state
masses of 150;153Yb and the excitation energy of 151Ybm were measured for the first time. As a result, the
persistence of the N ¼ 82 shell with almost unmodified shell gap energies is established up to the proton
drip line. Furthermore, the puzzling systematics of the h11=2-excited isomeric states of the N ¼ 81 isotones
are unraveled using state-of-the-art mean field calculations.
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Experimental and theoretical studies of exotic nuclei,
i.e., very short-lived nuclei far away from the valley of
stability in the chart of the nuclides, present a unique and
important way to gain a general understanding of the

atomic nucleus and the governing interactions of its
constituents. Exotic nuclei reveal novel properties,
unknown in more stable nuclei, such as nuclear halos
and skins, and exotic decay modes [1,2]. A deeper under-
standing of nuclear structure hinges on theoretical models.
Extending experimental data toward the drip lines is
decisive for testing prediction capacities of theories, esti-
mating the model uncertainties and thus for improving
models and theories [3].
One striking effect, which may occur in exotic nuclei, is

a change in the nuclear shell structure toward the proton or
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neutron drip lines; shells can weaken or disappear, and new
magic numbers appear [4,5]. On the neutron-rich side of the
nuclear chart, shell closures have been shown to vanish far
from stability for the neutron numbers N ¼ 20 and N ¼ 28
[6,7], and new shell closures have been found for N ¼ 32
and N ¼ 34 [8–15]. The N ¼ 82 shell closure has been
studied for neutron-rich nuclei down to Cd [16–18]. The
data in the neutron-deficient region are incomplete, and the
evolution of the N ¼ 82 shell toward the proton drip line is
not known. In this Letter, the N ¼ 82 shell closure is
investigated by mass measurements up to the proton
drip line.
Series of nuclear isomers are known to occur near shell

closures. A unique sequence of isomers exists in the
N ¼ 81 isotones with even Z, ranging from 131Sn to
149Er [19,20]. This sequence is remarkable, because the
excitation energies of these Jπ ¼ 11=2− isomers stay
approximately constant at 750 keV between 139Ce and
149Er [21–25], over a range of eleven isotones. Such an
effect is unique for isomers throughout the chart of the
nuclides, and its origin has been considered enigmatic since
its discovery more than 60 years ago [22,25,26]. The
dependence of energy vs total angular momentum within
noncollective excitation regimes is usually strongly irregu-
lar according to nuclear mean-field theory [27]. Yet here,
the experimental data of the series are extended, and the
origin of the constant excitation energies is explained using
state-of-the-art mean-field calculations.
A major challenge for experiments with exotic nuclei at

radioactive ion beam facilities is isobaric contamination.
Nuclei closer to stability and molecules are usually pro-
duced with rates many orders of magnitude higher than
those of the nuclei of interest and hamper measurements of
the exotic nuclei. Recently, multiple-reflection time-of-
flight mass spectrometers (MR-TOF-MS) [28,29] have
been established as isobar separators [30,31] and even
isomer separators [32]. They feature very high mass
separation powers of several 105 and short cycle times,
enabling access to very short-lived (≈ms) nuclides and high
ion rates (106 ions=s). MR-TOF-MS can also be used for
direct mass measurements of exotic nuclei [9,12,33,34] and
diagnostic purposes [35–37]. In an MR-TOF-MS, ions are
cooled in a radio-frequency (RF) ion trap (injection trap),
injected into a time-of-flight (TOF) analyzer, in which the
ions are stored between two ion reflectors and dispersed in
TOF according to their mass-to-charge ratios. Mass sep-
aration is then achieved by the subsequent removal of the
unwanted ions using a fast-switching deflector, such as a
Bradbury-Nielsen gate [30], a pulsed drift tube [38], or one
of the reflectors [39]. A novel method for mass separation
in an MR-TOF-MS is the dynamical retrapping of the ions
in the injection trap after the TOF dispersion procedure
[40]. This retrapping technique is highly mass selective;
the ions of interest can be stored, while other ions are
removed. In contrast with the other methods, it allows an

MR-TOF-MS to act as an isobar separator for its own mass
measurements. It has been developed for the MR-TOF-MS
[41,42] at TRIUMF’s Ion Trap for Atomic and Nuclear
Science (TITAN) [43], but it could also be used to add one
or several stages of isobar separation to mass measurements
in other MR-TOF-MS worldwide.
In this Letter, mass-selective retrapping has been

employed for the first time online. High-accuracy mass
measurements of neutron-deficient Yb isotopes were per-
formed using TITAN’s MR-TOF-MS. The nuclei were
produced in spallation reactions at the Isotope Separator
and Accelerator (ISAC) facility [44] by impinging a
480 MeV proton beam with a current of 25 to 45 μA
from the TRIUMF cyclotron onto a Ta target. Yb atoms that
left the target were ionized by the TRIUMF resonant
ionization laser ion source [45], using a two-step resonant
laser excitation scheme into a high-lying Rydberg state
[46,47]. Ions were extracted and separated using ISAC’s
high-resolution mass separator [48] at a mass separation
power of about 2000. The isobaric beam, consisting mostly
of singly charged Eu, Dy, Ho, Er, Tm, Yb, BaF, and CeO
ions, was transported to the TITAN facility, cooled and
bunched in the TITAN RF quadrupole cooler buncher [49],
and injected into the MR-TOF-MS. There, the ions were
transported to the injection trap, cooled, and injected into
the TOF analyzer, where they performed one time-focus
shift turn [50] and about 330 isochronous turns (IT),
corresponding to a TOF of about 8 ms. Then the ions
were ejected onto a detector. A mass-resolving power of
about 270 000 (FWHM) was achieved. For measurements,
in which the isobaric contamination was too high to
observe Yb ions, the MR-TOF-MS was first used as an
isobar separator: after TOF dispersion of the ions in the
analyzer, the ions of interest were retrapped in the injection
trap. Then, they were recooled and injected again
into the analyzer for the subsequent mass measurement
procedure. The overall cycle time was 20 ms. After
each mass measurement, a spectrum was taken without
resonant laser ionization to verify the identification of the
Yb ions.
Figure 1 shows mass spectra measured without and with

retrapping. The mass separation power amounts to 35 000.
To avoid deterioration of the mass measurement accuracy
due to ion-ion interactions, the beam was attenuated in the
ISAC beam line to about one ion per species per cycle
detected in the MR-TOF-MS. Using mass-selective retrap-
ping, the rate of contaminant ions was reduced by at least 3
orders of magnitude, and the rate of incoming ions could
therefore be increased by a corresponding factor by
increasing the proton current on the target and by reducing
the attenuation. As shown in Fig. 1, the nuclides 151Tm and
151Yb could only be measured with retrapping. Similarily,
the measurement of 150Yb required retrapping. The retrap-
ping increases the dynamic range of the measurement to 5
orders of magnitude, a value which is rarely achieved in
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mass spectrometry. It also reduces the total number of ions
that reach the detector; this minimizes the background
resulting from radioactivity implanted on the detector.
For the analysis of the data, the recorded TOF data were

converted to mass data using an isobaric ion species present
in the mass spectrum to provide a time-resolved cali-
bration [52]. The mass spectra were analyzed by fitting

hyper-EMG functions [51] to the unbinned mass data using
weighted maximum likelihood estimation [52]. The iso-
topes of interest and their respective calibrants are listed in
Table I. The mass values of the calibrants were taken from
the atomic mass evaluation (AME2020) [53]. The domi-
nating contribution to the systematic uncertainty are shifts
in the TOF due to voltage ringing caused by the switching
of the reflector voltages [54,55]. Its relative value amounts
to 3 × 10−7.
The ground state masses of eight Yb isotopes were

measured (Table I). For 154−157Yb, the masses were already
well known, and the present results are in good agreement
with the AME2020 [53]. The masses of 151Yb and 152Yb
were measured directly for the first time, and their
uncertainties could be reduced by a factor of 3. The masses
of 150Yb and 153Yb were measured for the first time.
With these results, the N ¼ 82 shell closure can be

examined in the extreme proton-rich region. Figure 2
shows the empirical two-neutron-shell gap Δ2nðZ;NÞ ¼
S2nðZ;NÞ − S2nðZ;N þ 2Þ, where S2nðZ;NÞ ¼ BðZ;NÞ −
BðZ;N − 2Þ is the two-neutron separation energy and
BðZ;NÞ is the binding energy, for different N ¼ 82
isotones. The two-neutron-shell gap shows pronounced
maxima when crossing closed shells. From the proton shell
closure at Z ¼ 50, the two-neutron-shell gap decreases,
though from Z ¼ 58 onward, the reduction is only weak.
So far, the most proton-rich nuclide, for which Δ2n was
known, was 150Er (Z ¼ 68). The newly determined value
for 152Yb (Z ¼ 70), despite being the lowest value found so
far, clearly establishes that the shell persists with almost
unmodified shell gap energy up to the proton drip line. The
drip line is expected to lie between 152Yb and 153Lu
(Z ¼ 71) [53,56]. The experimental data are compared
with different theoretical models, the macroscopic-micro-
scopic finite-range droplet model FRDM(2012) [57], and
two microscopic models, the Hartree-Fock-Bogoliubov

TABLE I. List of measured mass excess values of Yb isotopes,
METITAN. Mass excess values from the AME2020, MEAME20, and
the deviation ΔME ¼ METITAN −MEAME20 [53] are given for
comparison, where available.

Nuclide Calibrant
METITAN
(keV=c2)

MEAME20
(keV=c2)

ΔME
(keV=c2)

157Yb 157Tmþ −53395ð54Þ −53420ð11Þ 25(55)
156Yb 156Tmþ −53331ð55Þ −53266ð9Þ −65ð56Þ
155Yb 155Euþ −50514ð45Þ −50503ð17Þ −11ð48Þ
154Yb 138Ce16Oþ −49934ð45Þ −49932ð17Þ −2ð48Þ
153Yb 153Dyþ −47102ð46Þ � � � � � �
152Yb 136Ce16Oþ −46061ð46Þ −46270ð150Þ 209(157)
151Yb 151Erþ −41297ð114Þ −41540ð300Þ 243(321)
151Ybm 151Erþ −40617ð49Þ � � � � � �
150Yb 150Dyþ −38635ð44Þ � � � � � �
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151Dy+
151Ho+ 151Er+

(a) Retrapping off
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FIG. 1. Mass spectra at mass-to-charge ratio 151 u=e (a) with-
out retrapping, (b) with retrapping set for 151Yb, (c) enlarged to
the Yb region with retrapping, showing the 151Yb nuclear ground
and isomeric state. The ions performed 335 IT in the analyzer,
corresponding to a TOF of 8.14 ms. The curves represent hyper-
exponentially modified Gaussian (hyper-EMG) [51] fits to the
data. Note the different abundance scales. For both spectra (a) and
(b) the measurement time was 760 s; for (b) the incoming rate was
increased; (c) contains all data taken during about 3 h with
different proton currents on the target.
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FIG. 2. Evolution of the two-neutron-shell gap Δ2n at N ¼ 82
as a function of the proton number Z and predictions of the
theoretical models HFB21 [58], UNEDF0 [59], and FRDM2012
[57]. Experimental data are from the AME2020 [53] and this
Letter. Regions of proton-unbound nuclides are indicated [53,56].
Most error bars are hidden in the symbols; lines are drawn to
guide the eye.
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model with BSk21 Skyrme interaction (HFB-21) [58], and
the energy density functional UNEDF0 [59]. Although
HFB-21 comes closest to the measured values, in particular
for the most proton-rich isotones, none of these models
fully reproduces the experimental trend. This fact high-
lights the importance of measurements for model improve-
ments and model error estimates.
Furthermore, the mass of 153Yb provides an anchor point

for the α decay chains from 173Hg to 153Yb and from 170Au
to 154Lu and thus determines the absolute masses of nine
more nuclides and fixes the mass surface in this region of
the chart of nuclides [60,61].
A Jπ ¼ 11=2− isomer has been observed in 151Yb

previously [62–64], but in this work its excitation energy
was measured for the first time [Fig. 1(c)]. In total, 460
events were detected with an isomer-to-ground state ratio of
11.1(3.1), corresponding to 38 events in the ground state.
The measured excitation energy is 679(105) keV; it falls
in line with the excitation energy of about 750 keV
of Jπ ¼ 11=2− isomers in the even Z, N ¼ 81 isotones
from 139Ce onward. The experimental data are shown in
Fig. 3(a). The systematic trend suggests the assignment of
the measured Yb isomer as Jπ ¼ 11=2− [25,63]. The
Jπ ¼ 1=2þ, 3=2þ, and 11=2− states are neutron-hole states
below the closed shell and can be associated with the s1=2,
d3=2, and h11=2 orbitals, respectively. The fact that the
excitation energies are constant has not been explained so
far [22,25,26].
In order to resolve this long-standing riddle, mean-field

calculations were performed. The phenomenological,
deformed Woods-Saxon Hamiltonian in its so-called
universal parametrization, for which its parameters are

fixed throughout the chart of nuclides, was employed
[65–69]. Its use is supported by the fact that it has been
successfully applied in numerous nuclear structure calcu-
lations. Furthermore, it has recently been tested extensively
from the point of view of prediction uncertainties and
elimination of parametric correlations [70], which are
known to destroy—often completely—model prediction
capacities [71].
Potential-energy calculations using the Strutinsky

method [72] were performed for all even-Z isotones from
Sn to Hf. Partial results are shown in Fig. 3(b). The Jπ ¼
3=2þ ground states with even Z from Sn to Gd can be
associated with d3=2, and Jπ ¼ 1=2þ with s1=2 orbitals from
Dy to Hf. The latter orbital does not couple with the spin-
orbit field at all, whereas the former does so only very
weakly, so that their crossing at Gd and Dy reflects mainly
the evolution of the central potential with Z.
Calculations show the impact of the shell closures

at Z ¼ 50 and N ¼ 82, in that the ground-state equilibrium
shapes remain spherical for the Sn, Te, Xe, and Ba isotones,
though the potential stiffness decreases. They predict
nonspherical (oblate) quadrupole equilibrium shapes for
139Ce and heavier isotones, while predicting small but
increasingly prolate shapes for the Jπ ¼ 11=2− isomers.
This evolution coincides with the evolution of the energies
of the isomers, which increase from about 40 keV in 131Sn
to about 750 keV in 139Ce, i.e., within the zone of spherical
ground states. Stabilization at about 750 keV, starting with
Ce (Z ¼ 58), coincides with the mean-field predictions of
the slightly prolate quadrupole shapes with quadrupole
deformations of α20 ≈ 0.10 at the Jπ ¼ 11=2− isomeric
energy minima. The calculations also show that the trend of
constant Jπ ¼ 11=2− isomer excitation energies continues
for 153Hf.
Below spherical closed neutron shells (here N ¼ 82), K

isomers usually correspond to nucleonic configurations
with maximum alignment of the angular momentum j, i.e.,
with projection mj ¼ j, at slightly prolate quadrupole
shapes [27]. Calculations suggest that h11=2 isomers have

FIG. 3. (a) Measured excitation energies of isomers in the even-
Z N ¼ 81 isotones from Sn to Yb [19,25]. The value for 151Yb
results from the present work. Most error bars are invisible within
the scale of the figure. Note the constancy of the h11=2 excitation
energy from Ce to Yb. (b) Corresponding results obtained using
mean-field calculations with universal parametrization of the
Woods-Saxon Hamiltonian. From Nd (Z ¼ 60) to Hf (Z ¼ 72),
the filled proton levels are near-degenerate, cf. Fig. 4.

FIG. 4. Single proton energies as functions of the quadrupole
deformation α20, calculated using the Woods-Saxon Hamiltonian.
The numbers in the circles represent the number of protons that
can fill the levels below the circles. Note a near-degeneracy of six
levels at small prolate deformations, indicated with oval curve,
cf. Nd–Hf evolution in Fig. 3.
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typical prolate deformations of α20 ≈ 0.1. The underlying
stabilizing structural element is the very high single-
nucleonic (proton) density at α20 ≈ 0.12 (Fig. 4), where
six proton levels lie very close together. According to the
Strutinsky shell-correction approach, the corresponding
shell energies are strongly negative and nearly constant,
stabilizing the corresponding shapes with isomer energies
at about 800 keV.
In summary, high-accuracy mass measurements of neu-

tron-deficient Yb isotopes have been performed. They were
enabled by the first-ever simultaneous on-line use of an
MR-TOF-MS as an isobar separator and as a mass
spectrometer, employing mass-selective retrapping, and
thus extending the measurements to two isotopes further
away from stability than otherwise possible. The persist-
ence of the N ¼ 82 shell with almost unmodified shell gap
energies was established up to the expected location of the
proton drip line. Furthermore, the results extend the knowl-
edge of excitation energies of the unique Jπ ¼ 11=2−

isomers in even-Z, N ¼ 81 isotones. The structural proper-
ties of this sequence were analyzed, and the constant
excitation energies over a range of 13 isotones was
explained. Application of the mass-selective retrapping is
not limited to TITAN, but could also be employed with
other MR-TOF-MS worldwide to extend the reach of mass
measurements with these devices by two or more isotopes
toward exoticity. Since its first use in this experiment,
this technique is now regularly applied in TITAN’s
MR-TOF-MS.
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