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In this Letter we demonstrate that what was previously considered as different mechanisms of baryon
asymmetry generation involving two right-handed Majorana neutrinos with masses far below the Grand
Unified Theory scale—leptogenesis via neutrino oscillations and resonant leptogenesis—are actually
united. We show that the observed baryon asymmetry can be generated for all experimentally allowed
values of the right-handed neutrino masses above MN ≳ 100 MeV. Leptogenesis is effective in a broad
range of the parameters, including mass splitting between two right-handed neutrinos as big as
ΔMN=MN ∼ 0.1, as well as mixing angles between the heavy and light neutrinos large enough to be
accessible to planned intensity experiments or future colliders.
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Introduction.—Flavor oscillations of neutrinos are the
only laboratory tested phenomenon pointing at the incom-
pleteness of the standard model (SM). The presence of the
ordinary baryonic matter in the observed amounts cannot
be explained within the SM as well (see, e.g., review [1]).
The minimal renormalizable extension of the SM contains
two or more gauge singlet right-handed neutrinos which
allow for a Dirac mass matrix mD for the neutrinos. These
singlet right-handed neutrinos are the only particles which
can have Majorana masses, with their mass matrixMM. We
do not know the values of these mass terms apriori; instead,
they should be determined experimentally (like any
other coefficients in front of renormalizable operators).
Remarkably, diagonalizing the common neutrino mass
matrix one finds that if MM ≫ mD, the mass matrix of
light neutrinos is mν ≃ −m2

D=MM. This is the famous
seesaw formula [2–7]. An important consequence of the
theory is the mixing between the light and heavy neutrinos.
This mixing allows the heavy neutrinos to interact with the
rest of the SM, so from the experimental point of view they
behave like heavy neutral leptons (HNLs). The search for
HNLs is an important part of the physics programs of most
existing accelerator experiments [8–14]. Planned high
intensity frontier experiments [15–19], especially the
Search for Hidden Particles (SHiP) experiment [20],
provide an unparalleled opportunity if M is in the region
around a few GeV, whereas future colliders, such as the
Future Circular Collider in the lepton option (FCC-ee) [21–

24], or the Circular Electron Positron Collider (CEPC)
[23,24] will cover a significant portion of the parameter
space of heavier HNLs. The capability of explaining
neutrino masses strongly motivates HNL searches.
However, there are other intriguing consequences of the
theory outlined above. Yukawa couplings of right-handed
neutrinos can carry new sources of CP violation, while the
HNLs themselves deviate from equilibrium in one way or
another. Sphaleron processes in the early universe provide
violation of the baryon number [25]. Therefore the
Sakharov conditions can be satisfied and generation of
the Baryon Asymmetry of the Universe (BAU) is possible.
HNLs interact only with leptons, so it is the lepton
asymmetry which is generated and transferred to the baryon
sector by the sphaleron processes. This mechanism is
known as leptogenesis. (Let us note in passing that transfer
of asymmetry from the lepton sector is efficient at temper-
atures exceeding ≃130 GeV [26], this means that HNLs
responsible for leptogenesis serve as a unique probe of the
very early universe.) The suggestion along these lines was
proposed by Fukugita and Yanagida [27] who considered
very heavy right-handed neutrinos with masses above
109 GeV [28]. The mass scale of leptogenesis can be
significantly lowered if two HNLs are nearly degenerate in
mass; this phenomenon was dubbed resonant leptogenesis
[29–39] (for more recent work see, e.g., [40–51]). It has
also been realized that GeV-scale right-handed neutrinos
can also generate the BAU in leptogenesis via oscillations
[52,53] (for more recent work see, e.g., [54–84]). In the
minimal scenario with two heavy neutrinos, both lepto-
geneses require the HNLs to have nearly degenerate
masses. The mass degeneracy of two HNLs is an interesting
feature from the theoretical point of view as it may be a
result of a global leptonic symmetry—in this case a pair of
Majorana neutrinos N can be joined into a quasi-Dirac
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fermion. This allows for sizable mixings between active
neutrinos and HNLs in a technically natural way [85–94].
Note that in the case with three HNLs a mass degeneracy is
no longer necessary for leptogenesis [61,81].
Resonant leptogenesis and leptogenesis via

oscillations.—After inflation the baryon and lepton num-
bers of the universe as well as the number of HNLs may
well be zero, and we will assume that this is indeed the case
[95] (This is not necessarily so if the seesaw Lagrangian is
supplemented by higher dimensional operators [96,97].).
The baryon asymmetry of the universe in both leptogeneses
is produced in a set of processes including scatterings,
decays, coherent oscillations of HNLs, and sphaleron
transitions.
The conceptual difference between the two leptogeneses

is the moment in the history of the universe when the
asymmetry is generated. In resonant leptogenesis the BAU
is usually generated when the temperature drops below the
heavy neutrino mass, T ≲MN , and the neutrinos begin to
decay out of equilibrium [38,39]. As conversion between
lepton and baryon number requires fast electroweak spha-
leron processes, this implies a lower bound on the heavy
neutrino masses around MN ∼ Tsph ≃ 130 GeV [26].
Indeed, this is close to the lowest heavy neutrino mass
for which resonant leptogenesis was studied in [39].
On the other hand, in baryogenesis via neutrino oscil-

lations, the BAU is primarily produced during the equili-
bration of the heavy neutrinos. It has been argued that
baryogenesis via oscillation only works whenMN is below
MW [21]. For heavier HNLs decay channels into W and Z
bosons open up, and a large equilibration rate wipes out
deviation from equilibrium.
The question of whether the two leptogeneses—one at

the GeV scale, and the other one above MW—are indeed
disconnected requires a systematic quantitative study. In
this Letter we perform such a study using state-of-the-art
rates and quantum kinetic equations for the first time. We
show that the parameter spaces of the two leptogeneses are
actually united, and that leptogenesis with two HNLs is
operative for all values MN larger than a fraction of GeV.
To avoid confusion with the terminology of oscillations

and resonances (present in both mechanisms), in the
remainder of the text, we borrow the language often used
for dark matter production mechanisms, and refer to the
two mechanisms as freeze-in leptogenesis, which mainly
corresponds to leptogenesis via oscillations, where the
BAU is mainly generated during the production of the
HNLs, and freeze-out leptogenesis, which corresponds to
conventional resonant leptogenesis, where the majority of
the BAU is generated as the heavy neutrinos drop out of
equilibrium due to the expansion of the universe.
A unified picture.—The first question one may ask when

comparing the two mechanisms is whether the equations
governing the production of the BAU are the same. There
have been several approaches to deriving the evolution

equations for resonant leptogenesis and leptogenesis via
oscillations. In the case of resonant leptogenesis the
perturbative computation leads to a divergent heavy neu-
trino decay asymmetry in the limit of exactly degenerate
heavy neutrinos (see, e.g., [29]). This can be understood as
a breakdown of the usual perturbation theory, since the
unstable heavy neutrinos cannot appear as asymptotic S-
matrix states. After the initial developments [29,31,33–37],
the studies of resonant leptogenesis have taken a more
formal turn with the goal of deriving the evolution
equations from first principles, in particular using methods
from nonequilibrium quantum field theory, in particular the
closed-time-path (CTP) formalism [40–47,49,98–106]. For
leptogenesis via neutrino oscillations, where the neutrinos
are close to relativistic, the equations are often derived by
generalizing the treatment of Sigl and Raffelt [107] of
relativistic mixed neutrinos to the scenario with additional
heavy states [52,53]. The same type of equations can be
derived in the CTP formalism [45] if we assume a common
mass shell for the two heavy neutrinos. This approach has
successfully been used in studies of both resonant lepto-
genesis [48] and leptogenesis via neutrino oscillations [71],
by taking the nonrelativistic and relativistic limits respec-
tively. In this Letter we present, for the first time, a unified
study accounting for all the effects with a single set of
equations that leads to the two regimes of leptogenesis in
the appropriate limits. The importance of nonrelativistic
corrections to leptogenesis via oscillations was pointed out
in [50,75,76]. The equations that we use in the remainder of
this Letter are obtained from the ones used in [75,80] after
a change of basis (cf. also Refs. [83,108] and also
[45,71,78]).
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where nΔα
≡ Lα − B=3 represent the comoving lepton

asymmetries which can be related to the chemical poten-
tials through the susceptibility matrix μβ ¼ ωαβnΔα

, and ρN
(ρ̄�N) is the matrix of the comoving number densities
of HNLs of positive (negative) helicity. (Note that these
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equations need to be modified at T > 85 TeV, at which
right-handed electrons are not in equilibrium.) The equa-
tions are governed by two sets of equilibration matrices
Γ ¼ P

α Γα and Γ̃ ¼ P
α Γ̃α (the former describing the

washout of asymmetries, whilst the latter quantifies
the transfer of asymmetry between HNLs and leptons),
the effective Hamiltonian HN (which describes the
neutrino oscillations), and by the equilibrium matrix
ρeqN ¼ 12×2 · fN þOðΔMN=ENÞ, where fN is the equilib-
rium distribution of the HNLs. Equation (1) describes both
leptogeneses. Note that equations derived in Refs. [46,48]
for the case of resonant leptogenesis have a similar form
except for the fact that the equations for ρ̄N are not

independent from those for ρN which is not the case in
Eq. (1). However, there is no contradiction since in the
nonrelativistic limit Eq. (1c) indeed becomes a conjugate of
Eq. (1b). Another important distinction is that the equations
from Ref. [46] contain the so-called effective Yukawa
couplings [34,38]. We do not include such resummations
in the present Letter, since a need for them does not arise in
the derivations of quantum Boltzmann equations in either
the Raffelt-Sigl [52,53,76,108] or in the Wigner space CTP
approaches [45,71,78]. The rates entering Eq. (1) pose the
main theoretical challenge. A lot of effort has been made to
compute them at high temperatures [57,59,109–112];
however, the rates in the literature are typically helicity
averaged. For relativistic HNLs the rate is helicity depen-
dent and requires a more careful calculation [67,76,79].
The helicity-dependent rates have only been calculated in
the relativistic limit, and cannot be applied in the inter-
mediate regime, which is crucial to connect the two
mechanisms. In Ref. [113] we approximate the rate Γ
and show that the results are insensitive to the details of
such estimates.
Parameter space of leptogenesis.—The system of equa-

tions (1) needs to be solved numerically to obtain an
accurate estimate of the BAU. Solving momentum-
averaged equations (see [58,79]), we perform a parameter
scan over the masses and mixing angles consistent with the
observed light neutrino masses using the Casas-Ibarra
parametrization [114].
The neutrino flavor eigenstates can be expressed as

να ¼ Uαiνi þ ΘαINc
I , where νi and NI are light and heavy

mass eigenstates with masses mi and MI respectively, Uαi
is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix,
and ΘαI is the mixing between active neutrinos and HNLs.
Here we consider the case of two HNLs (The third HNL—
if it exists—could be light and very weakly coupled [89],
which makes it a suitable dark matter candidate as is the
case in the neutrino minimal standard model, νMSM
[53,60,62,83,115].), which is compatible with the neutrino
oscillation data, so I ¼ 1, 2 and MN1;2

¼ MN � ΔM. It is
convenient to characterize the overall strength of the
mixing using jUj2 ¼ P

αI jΘαIj2. The seesaw requires that
jUj2 ≥ P

i mi=MN , whereas demanding successful lepto-
genesis sets up an upper bound on jUj2 as well as a lower
bound on jUj2 for MN ≲ 1 GeV. We do not consider the
bound from Big Bang Nucleosynthesis [116–120]. In Fig. 1
we show the region in the parameter space where the
observed value of the BAU can be generated. As one can
see, the results depend on the neutrino mass hierarchy. One
can show [113] that the allowed region extends to heavier
masses and both upper and lower bounds scale as
jUj2 ∝ 1=M. This scaling breaks down around M ∼
107 GeV due to flavor effects [121–126], as well as the
maximal mass splitting becoming of order ΔM=M ∼Oð1Þ,
which leads to a breakdown of the quasiparticle appro-
ximation used to derive the quantum kinetic equations.

FIG. 1. Upper panel: normal hierarchy. Lower panel: inverted
hierarchy. In the light blue region it is not possible to produce the
observed BAU. Regions of parameter space corresponding to the
freeze-in (no source term) and freeze-out regimes (thermal initial
conditions) are bounded by the red dotted and light blue dashed
lines, respectively. Together the two regimes span the whole low-
scale leptogenesis parameter space. Freeze-in leptogenesis re-
mains viable up to arbitrarily large masses, albeit for compara-
tively smaller mixing angles. The colored areas correspond to the
maximal mass splitting consistent with leptogenesis for fixed M
and U2. Note that the lower jUj2 bound from leptogenesis
coincides with the one imposed by the seesaw mechanism jUj2 ≥P

i mi=MN for MN ≳ 1 GeV. The white region corresponds to
mass splittings below 10−6. One can see that the region of large
mass splittings mostly coincides with the freeze-in leptogenesis
regime. This can be expected, as for large mass splitting the
majority of the BAU is generated at high temperatures before the
HNLs begin to decay. For comparison we also show the expected
sensitivities of SHiP (dark blue), high-luminosity large hadron
collider (HL LHC) (purple), and FCC-ee (orange) as represen-
tative experiments in their corresponding mass range. The
sensitivity lines are taken from [14,20,23].
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As one can see in Fig. 1, there is a continuous region in the
U2 −M plane where leptogenesis in its seemingly different
incarnations is operative.
Regimes of leptogenesis.— As we can see from Fig. 1,

there is no clear separation between the two leptogeneses.
We distinguish between them based on when the majority
of the asymmetry is generated, i.e., during freeze-in or
freeze-out. To fully separate these regimes, we consider
different initial conditions for the heavy neutrinos. For the
freeze-out parameter space we start with thermalized heavy
neutrinos, and rely purely on their deviation from equilib-
rium due to the expansion of the universe. This deviation is
caused by the time derivative of the equilibrium distribution
ρeqN , which we refer to as the source term. The presence of
this source term can be seen when the equations are written
in terms of the deviation of ρN and ρ̄N from equilibrium.
Similarly, for freeze-in leptogenesis, we artificially turn off
this source term and rely only on their vanishing initial
abundance. The comparison between these three “param-
eter spaces” is shown in Fig. 1. The parameter space of
freeze-out (freeze-in) leptogenesis is bounded by the light
blue dashed (red dotted) line in Fig. 1. Of course, the
physical solution relies on the presence of both effects and
is bounded by the solid blue line in Fig. 1.
Perhaps surprisingly, we find that both regimes extend

beyond the masses we would naively associate with them.
Freeze-in leptogenesis extends far beyondMW , and freeze-
out leptogenesis is possible already for masses as low as
≃5 GeV. The main ingredients which make the overlap of
these regimes possible are (i) flavor hierarchical washout,
(ii) deviation from equilibrium due to the expansion of the
universe, and (iii) approximate lepton number conservation.
When the heavy neutrino masses are of the same order as

the temperature, the ratio of the HNL equilibration and
Hubble rates is in general quite large, with the smallest
value for normal hierarchy being around Oð30Þ. Naively
this would lead us to expect that any asymmetries generated
during freeze-in would be erased by the strong washout.
However, the washout rate of a particular lepton flavor can
be several orders of magnitude smaller than the equilibra-
tion rate for the heavy neutrinos. The presence of a flavor
hierarchical washout is almost completely determined by
the CP-violating phase δ and the Majorana phases from the
PMNS matrix as parametrized in [127]. It can range from
Oð10−3Þ toOð10−1Þ for normal hierarchy, while it can be as
small asOð10−4Þ, or completely nonhierarchical in the case
of inverted hierarchy. For large masses of HNLs, freeze-in
leptogenesis crucially depends on the presence of such
hierarchies (cf. [128], where the importance of a hierar-
chical washout was pointed out in the 3 HNL case).
Furthermore, we find that freeze-in is the dominant
mechanism when the mass splitting between the heavy
neutrinos is sizable ΔMN=MN ∼Oð10−2Þ, as demonstrated
in Fig. 1.

At the same time, we find successful freeze-out lepto-
genesis at the few GeV scale. The main reason behind this
effect is that the decay asymmetries of the heavy neutrinos
can be close to Oð1Þ. The deviation from equilibrium
caused by the heavy neutrino freeze-out in such a scenario
will be suppressed by 10−3M2=T2, and can still lead to the
observed baryon asymmetry.
Finally, we also find that even in the absence of flavor

hierarchical washout, large mixing angles remain viable for
heavy neutrino masses aboveMW . The main reason behind
this observation is the presence of an approximately
conserved lepton number. If the pair of heavy Majorana
neutrinos is close to degenerate in mass, they can be
combined into a single pseudo-Dirac neutrino which can
carry a lepton number. This type of scenario was studied as
a technically natural way of adding light right-handed
neutrinos to the SM [85–92,129]. However, the importance
of an approximate lepton number in preventing large
washout during leptogenesis was first noted in [130].
The small parameter determining the conservation of this
lepton number is the ratio of the heavy neutrino mass
splitting and their interaction (decay) rate.
Resonant leptogenesis with GeV-scale heavy neutrinos

was considered in Ref. [50]. (Recently a similar study was
also performed in [51], with a different calculation of the
rates for the 1 ↔ 2 processes. Another similar study was
performed in [131], with an emphasis on the importance of
the lepton flavor violating decay asymmetry.) In this Letter it
was suggested that the parameter space of resonant lepto-
genesis could extend to GeV-scale heavy neutrino masses.
Our results confirm this estimate and establish a similar but
not identical lower bound. The analysis of Ref. [50] was
based on qualitative arguments relying on Boltzmann
equations, and it did not take into account the full time
dependence of the decay asymmetry. In fact, it is known that
a decay asymmetry provides an accurate description of
leptogenesis only when certain conditions are met—when
the mass splitting between heavy neutrinos is much larger
than the equilibration rate Γ, or when all the eigenvalues of
the heavy neutrino equilibration matrix Γ are much bigger
than the Hubble rate H [45,46,48,132]. Neither of these
conditions is fulfilled in Refs. [50,68,131]. Moreover, flavor
effects which are crucial for freeze-in leptogenesis were
neglected; these effects were included in a more recent study
[131]. The refined study using the density-matrix formalism
from [68] shows semiquantitative agreement in the mass
range of a few GeV, but also indicates that the use of
Boltzmann equations may lead to a significant overestimate
of the produced BAU for larger heavy neutrinomasses (up to
10 GeV, where their study of the parameter space halts).
Furthermore, the processes giving the dominant contribu-
tions to the rates have been neglected (see, e.g., discussion in
[80]) in Refs. [50,68]. In our study we do not rely on these
approximations and do not limit themass splitting to specific
values, as was done in [50,68]. Note that in [113] we
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compare the Boltzmann and density-matrix approaches, and
show how the former arises in the appropriate limits of the
latter. As a consequence, we find qualitatively very different
limits on jUj2 and ΔMN=MN .
Discussion and conclusions.—In this Letter we inves-

tigate the similarities and differences between resonant
leptogenesis and leptogenesis via neutrino oscillations in
the minimal extension of the standard model by two HNLs.
The two mechanisms are closely related, and the equations
needed to describe them are in fact the same. Since the
defining feature of resonant leptogenesis, namely the res-
onant production of the baryon asymmetry, is also present in
leptogenesis via neutrino oscillations, we focus on themajor
difference between the two mechanisms, namely the ques-
tion of whether the majority of the BAU is produced during
the freeze-in, or freeze-out of the heavy neutrinos.
We found significant overlap between the two regimes,

namely, freeze-in leptogenesis turns out to play a major role
in generating the BAU even for TeV and heavier Majorana
neutrinos. This regime mainly coincides with relatively
large ΔMN=MN ∼Oð10−2Þ mass splitting, compared
with the one optimal for a resonant enhancement ΔMN=
MN ∼ 10−11. Furthermore, the fact that the freeze-in regime
extends to large masses implies a strong dependence on the
initial condition which was typically absent in resonant
leptogenesis.
On the other hand, we also find viable realizations of

freeze-out leptogenesis for masses as low as M ≃ 5 GeV.
This can be understood through the large decay efficiency
of the HNLs, as a suppression factor of M2=T2 ∼ 10−3 is
not sufficiently small to prevent baryogenesis.
Together, these two parametric regimes span all experi-

mentally allowed masses for the heavy neutrinos, from a
fraction of GeV, to MW , and beyond.
The absence of a preferred mass scale of leptogenesis

calls for a vast and diverse search program.
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