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I derive an exact integral expression for the ratio of shear viscosity over entropy density η=s for the
massless (critical)OðNÞmodel at largeN with quartic interactions. The calculation is set up and performed
entirely from the field theory side using a nonperturbative resummation scheme that captures all
contributions to leading order in large N. In 2þ 1d, η=s is evaluated numerically at all values of the
coupling. For infinite coupling, I find ðη=sÞ ≃ 0.42ð1Þ × N. I show that this strong coupling result for the
viscosity is universal for a large class of interacting bosonic OðNÞ models.
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The shear viscosity is a transport coefficient that encodes
how efficiently spatial anisotropies are transmuted into
momentum anisotropies (velocity gradients). For relativis-
tic systems, a key dimensionless ratio that quantifies this
efficiency is found by the ratio of shear viscosity η to
entropy density s. Experimental measurements of momen-
tum anisotropies in heavy-ion collisions together with
hydrodynamic modeling constrain the value of shear
viscosity in QCD to ðη=sÞ≲ 0.2 [1–5].
This numerical value happens to be not too dissimilar

from the result ðη=sÞ ¼ ð1=4πÞ ≃ 0.08 found for the con-
jectured strong-coupling limit of another gauge theory,
N ¼ 4 supersymmetric Yang-Mills theory, in the large N
limit [6–8]. By contrast, in QCD where calculations are
limited to weak coupling only, one typically encounters
values ðη=sÞ ≫ ð1=4πÞ [9–11].
At intermediate couplings, results for the shear viscosity

exist for QED with many fermion flavors [12] and for
SU(3) gauge theory from lattice Monte Carlo simula-
tions [13,14]. At strong coupling, results for transport
coefficients have been limited to theories with known
holographic duals, with the exception of so-called thermo-
dynamic transport coefficients, such as κ [15]. In particular,
there is no known example of a theory where η=s has been
determined for all coupling strengths.
The present Letter is meant to fill this gap and provide

the complete coupling dependence for the shear viscosity
over entropy ratio by directly calculating the relevant low-
frequency limit of the energy-momentum tensor correlator
from the field theory. The theory to be studied will be the

OðNÞ vector model with quartic interactions in 2þ 1
dimensions in the large N limit, which exists for all values
of the coupling. The choice of this theory is motivated by
the fact that the entropy density s is known for all couplings
[16] and that an efficient resummation scheme that captures
all relevant contributions to the shear viscosity at large N is
known [17,18]. It also helps that the most difficult part of
the calculation, namely, the evaluation of the shear vis-
cosity coefficient for the OðNÞ vector model, has already
been set up for the 3þ 1d theory using a variant of the two-
particle irreducible formalism in Ref. [19]. Thus, strictly
speaking, the only new result in the present Letter will be
the determination of η=s at infinite coupling, which can be
done in the 3d large N OðNÞ model (but does not make
sense because of the Landau pole in 3þ 1d).
A major objection to calculating the shear viscosity in a

theory with only two space dimensions is the presence of
so-called long-time tails [20], which normally lead to a
divergent two-dimensional shear viscosity when naively
taking the low-frequency limit. However, for the OðNÞ
model it so happens that ðη=sÞ ∝ N, so that in the large N
limit long-time tails are suppressed by three powers of N,
cf. the discussion in Ref. [21]. For this reason, the
calculation of the shear viscosity as the zero-frequency
limit of the relevant energy-momentum correlator reported
in this Letter is well defined.
Preliminaries.—In the interest of brevity, Iwill not review

the setup of finite-temperature correlators in quantum field
theory (the interested reader is referred to the Supplemental
Material for this topic [22]). DenotingMinkowski momenta
as K ¼ ðω;kÞ and space-time coordinates as X ¼ ðt;xÞ,
I will use the relation of retarded real-timeGreen’s functions
GR and the spectral density ρ given by

GRðKÞ ¼ −
Z

dμ
π

ρðμ;kÞ
μ − ω − i0þ

: ð1Þ
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This relation can be used to derive the analytic continuation
of the corresponding Euclidean correlator to real time
(cf. Refs. [23,24])

GRðωÞ ¼ −GEðωE → iω − 0þÞ: ð2Þ
In order to connect the retarded correlator with transport

coefficients, one employs the low-momentum expansion of
GR provided by fluid dynamics. Fluid dynamics is the
effective field theory (EFT) of conserved quantities for
small moment. For a theory that conserves energy and
momentum, good EFT variables are the energy density and
fluid four-velocity ϵ; uμ, fulfilling uμuμ ¼ −1 (see, e.g.,
Ref. [23–25] for reviews of modern fluid dynamics). Using
fluid dynamics, it is straightforward to derive the relation
GRðω;k ¼ 0Þ ¼ P − iωηþOðω2Þ for the Txy correlator in
d ≥ 3 space-time dimensions, from which the so-called
Kubo relation follows,

lim
ω→0

∂
∂ωρxy;xyðω;k ¼ 0Þ ¼ η: ð3Þ

Including thermal fluctuations in the fluid dynamic
calculations leads to a long-time tail contribution for
d ¼ 3 of the form GRðω;k ¼ 0Þ ∝ ½iωT2=ðη=sÞ� lnω
(see Supplemental Material [22]). This term, in general,
invalidates the Kubo formula (3), except in the largeN limit
where it is suppressed by ðη=sÞ ∝ N, thereby allowing the
use of (3) to extract the shear viscosity for d ¼ 3 toOðN0Þ.
The OðNÞ model.—The field theory I consider in this

Letter is that of a massless (“critical”) N-component scalar
field ϕa, a ¼ 1; 2;…; N with Euclidean action

S ¼
Z

ddX

�
1

2
∂μϕa∂μϕa þ

λ

N
ðϕaϕaÞ2

�
; ð4Þ

where at finite temperature T the X0 ¼ τ direction is
compactified on a circle with radius β. The partition
function for this theory Z ¼ R

Dϕe−S may be rewritten

by inserting 1¼R
Dσδðσ−ϕaϕaÞ¼

R
DσDζei

R
ζðσ−ϕaϕaÞ.

Integrating out the σ field gives

Z ¼
Z

DϕDζe−
R
X
ð1
2
∂μϕa∂μϕaþiζϕaϕaþN

4λζ
2Þ: ð5Þ

Splitting the field ζ ¼ 1
2
ζ0 þ ζ0 into a zero mode and

fluctuations, the action in (5) becomes

S ¼ SR0;0 þ SR0;I þ
NVβ
16λ

ζ20;

SR0;0 ¼
1

2

Z
X

�
∂μϕa∂μϕa þ iζ0ϕaϕa þ

N
2λ

ζ02
�
; ð6Þ

where SR0;I ¼ i
R
X ζ

0ϕaϕa.

At leading order in large N, only the zero mode from the
ζ field contributes to the partition function, so SR0;I may be
ignored. This corresponds to a particular resummation of
finite-temperature Feynman diagrams (certain tadpoles),
dubbed the R0-level resummation in Ref. [17]. One finds
for R0,

ZR0 ¼
ffiffiffiffiffiffiffiffiffiffi
NVβ
16πλ

r Z
dζ0e

−NVβ
16λ ζ

2
0
−NVβJð

ffiffiffiffiffi
iζ0

p
Þ; ð7Þ

where V is the d − 1-dimensional volume of space and

e−NVβJð
ffiffiffiffiffi
iζ0

p
Þ ≡ R

Dϕe−
1
2

R
X
ð∂μϕa∂μϕaþiζ0ϕaϕaÞ. In the large N

limit, the remaining ordinary integral in (7) can be
evaluated exactly from the saddle point located at
iζ0 ¼ m2, so that ZR0 ¼ e−NVβ½m4−JðmÞ�, where

JðmÞ ¼ 1

2

Z
dd−1k
ð2πÞd ½Ek þ 2T ln ð1 − e−EkβÞ�; ð8Þ

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
([26], Eq. (2.44)]. Using dimensional

regularization for d ¼ 3 − 0þ, the saddle point condition
becomes

πλ̂m̂2 þ m̂þ 2 ln ð1 − e−m̂Þ ¼ 0; ð9Þ

where m̂≡ βm, λ̂≡ βλ. Note that in the strong-coupling
limit λ̂ → ∞ (9) has a universal solution m̂ ¼ 2 ln½ð1þffiffiffi
5

p Þ=2� [16,27]. Basic thermodynamic relations give the
exact large N entropy density as s ¼ ð∂=∂TÞðln ZR0=βVÞ.
Using (9), integration by parts, and a variable change to
E ¼ Ek, for d ¼ 3 this relation leads to

s¼−
Nβ

4π

Z
∞

m
dEEðE2−m2Þn0ðEÞ;

¼NT2

2π
½2m̂2 ln nðmÞþ6m̂Li2ðe−m̂Þþ6Li3ðe−m̂Þ�; ð10Þ

where nðxÞ ¼ ðeβx − 1Þ−1 and n0ðxÞ ¼ ∂xnðxÞ.
For some correlation functions, additional interactions

not included in the R0 resummation may contribute at
leading order in large N, making it necessary to go beyond
the R0 level. To this end, slightly changing notation from
Ref. [17], rewrite the action (6) as SR0;0 þ SR0;I ¼ SR2;0 þ
SR2;I with

SR2;0 ¼
1

2

Z
X;Y

ðϕaΔ−1ϕa þ ζ0D−1ζ0Þ;

SR2;I ¼ i
Z
X
ζ0ϕaϕa −

1

2

Z
X;Y

ðϕaΣϕa þ ζ0NΠζ0Þ; ð11Þ

where
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ΔðKÞ ¼ 1

K2 þm2 þ ΣðKÞ ; DðKÞ ¼ 1

N
1

1
2λ þ ΠðKÞ :

ð12Þ

The R2-level resummation then consists of calculating Σ,Π
self-consistently up to (including) one-loop level using
SR2;I , finding

ΣR2ðXÞ ¼ 2DðXÞΔðXÞ; ΠR2ðXÞ ¼ 4Δ2ðXÞ: ð13Þ

At large N, D ∝ ð1=NÞ, so Σ is generically subleading,
while Π is not.
At finite temperature, more subtle ways generating

contributions at leading order in large N arise, making it
necessary to go beyond the R2 resummation. To this end,
rewrite the action (6) again using SR2;0; SR2;I but express

i
Z
X
ζ0ϕaϕa ¼ þi

Z
X;Y;Z

ζ0ϕaϕa½Γ3 − δΓ3�; ð14Þ

where Γ3ðP;KÞ ¼ 1þ δΓ3ðP;KÞ is the resummed three-
vertex function and P and K are the incoming momenta for
the Δ propagators. The R3-level resummation then consists
of calculating Γ3 self-consistently to one-loop level, and Σ,
Π self-consistently up to (including) two-loop level.
Diagrammatically, one finds [17]

ð15Þ

where the full vertex is denoted by

where wiggly lines denote DðKÞ and straight lines
denote ΔðKÞ.
While the R0 resummation contains all leading order

large N contributions for the zero-point function, R2 and
R3 contain all large N contributions for the two- and three-
point function, respectively. The energy-momentum tensor
is a four-point function, so including all large N contribu-
tions requires going to R4. The R4 resummation is found
by adding and subtracting a term

R
X;Y;U;Z ϕaϕaϕbϕbΓ4.

Calculating the one-loop four-point vertex self-consistently,
one finds diagrammatically

ð16Þ

whereas the large N three-point vertex in R4 becomes

ð17Þ

and the self-energiesΠ, Σ are still diagrammatically given by
(15). Note that since D ∝ N−1, the four-point vertex and the
triangle diagram contribute at the same order at large N.
Energy-momentum tensor correlators.—For the action

(4), the Euclidean operator for the energy-momentum
tensor is given by TxyðXÞ ¼ ∂xϕaðXÞ∂yϕaðXÞ so that the
Euclidean energy-momentum tensor correlator is defined by

Gxy;xy
E ðXÞ ¼

R
Dϕe−STxyðXÞTxyð0Þ

Z
: ð18Þ

In the R0-level resummation, following (6) and neglecting
SR0;I , theR0 action is quadratic in ϕ and henceGxy;xy

E can be
calculated using Wick’s theorem. At finite temperature,
ϕaðXÞ ¼ T

P
kE

R
k eiKXϕaðKÞ, where kE ¼ 2πnT are the

bosonicMatsubara frequencieswithn ∈ Z. In Fourier space
with p ¼ px̂, one finds [15,16]

Gxy;xy
E;R0 ðPÞ ¼ 2N

XZ
K

ðkx − pÞ2k2y
ðK2 þm2Þ½ðK − PÞ2 þm2� ; ð19Þ

where the mass m is determined by (9). The result may be
analytically continued to real frequencies ω using Eq. (2).
The R0-level result Gxy;xy

R;R0 ðω;p ¼ 0Þ constitutes the correct
large N result for the retarded correlator except for the
region βω ≪ ð1=NÞ.
To appreciate this statement, let us reconsider Gxy;xy

E in
the R2-level resummation. Using (11) and neglecting SR2;I ,
the R2 action is once again quadratic in the fields, and
hence Gxy;xy

E can be calculated using Wick’s theorem.
Setting again p → 0 gives

Gxy;xy
E;R2 ðpEÞ ¼ 2N

XZ
K
k2xk2yΔðKÞΔðP − KÞ; ð20Þ

with Σ ¼ ΣR2 in (12) and ΣR2 specified by (13). Using the
spectral representation of the propagator

ρðKÞ ¼ −
ImΣðKÞ

½K2 þm2 þ ReΣðKÞÞ2 þ ðImΣðKÞ�2 ; ð21Þ

the thermal sum and angular integral is straightforward,
giving for d ¼ 3

Gxy;xy
E;R2 ðpEÞ ¼

N
4

Z
∞

0

dkk5

2π

Z
dμdμ0

2π2
ρðμÞρðμ0Þ

μþ μ0 þ ipE

×

�
coth

μ

2T
þ coth

μ0

2T

�
: ð22Þ

Note that since Σ ∝ ð1=NÞ, in the naive large N limit (21)
becomes the spectral function for a free massive particle,
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ρðωÞ ¼ πsignðωÞδðK2 þm2Þ. Continuing Gxy;xy
E analyti-

cally to real frequencies ωE → iω − 0þ, the imaginary part
becomes

ρxy;xyR2 ðωÞ ¼ N
2

Z
K
k4ρðk0Þρðω − k0Þ ½nðk0Þ − nðk0 − ωÞ�:

ð23Þ

One finds that the product ρðk0Þρðk0 − ωÞ has contribu-
tions where poles “pinch” the real k0 axis from above and
below in the large N limit. Focusing on the limit
βω ≪ ð1=NÞ, this contribution becomes

ρ2ðk0Þ → 1

2
ΔRðk0ÞΔAðk0Þ ¼ −

ρðk0Þ
2ImΣðk0;kÞ ; ð24Þ

which is proportional to N in the large N limit. Note that
the other contributions [as well as the whole product
ρðk0Þρðk0 − ωÞ for βω ≫ ð1=NÞ] give contributions of
order OðN0Þ, bringing us back to the R0 result (19).
The noncommutative nature of the limits βω → 0,
ð1=NÞ → 0 imply that for the calculation of transport
coefficients, contributions that are naively subleading at
large N become important. This enhancement process,
known as “pinching poles,” has a long history in nuclear
physics literature, cf. Refs. [19,28].
In the small frequency limit, the R2-level expression for

the shear viscosity from Eq. (3) is

ηR2 ¼
N
16π

Z
∞

m
dE

k4n0ðEÞ
ImΣðEÞ

����
k¼

ffiffiffiffiffiffiffiffiffiffi
E2−m2

p : ð25Þ

The R2-level expression for the shear viscosity is well
defined for all values of the coupling, but it does not contain
all contributions to leading order in large N. To this end, let
us reconsider the correlatorGxy;xy

E in R4-level resummation,
specified by (11) with (17). Since the R4-level action
contains a nontrivial vertex, Wick’s theorem can no longer
be used to evaluate the correlator; instead, interactions must
be included (see the Supplemental Material for an example
of how a generic four-point function is evaluated beyond
R2 [22]). For the energy-momentum correlator Gxy;xy

E;R4 , the
situation is slightly more simple than for a generic four-
point function, because the spatial derivatives ∂xϕ; ∂yϕ in
the definition imply that some contributions do not con-
tribute after angular integration (see Supplemental Material
[22]). However, instead of the regular three-vertex Γ3, the
corresponding contribution to Gxy;xy

E;R4 contains momenta kx,
ky inside the vertex. One thus finds

Gxy;xy
E;R4 ðpEÞ ¼ 2N

XZ
K
kxkyΓ3;xyðK;P − KÞΔðKÞΔðP − KÞ;

ð26Þ

where Γ3;xy ¼ kxky þ δΓ3;xy denotes the resummed three-
vertex, and the propagator ΔðKÞ contains Σ in the R4-level
resummation, cf. Eq. (15). The resummed vertex is the only
modification with respect to the R2 result (20), so one
needs to check if δΓ3;xy, which naively is order 1=N, gets
enhanced in the limit P → 0. One finds

δΓ3;xyðK;P − KÞ ¼ −4
XZ

Q
ΔðQÞΔðP −QÞWðP;Q;KÞ

× Γ3ð−Q;P − KÞΓ3ðK;Q − PÞ
× Γ3;xyðQ;P −QÞ; ð27Þ

where the integral kernel is WðP;Q;KÞ ¼
DðP − K −QÞ þ 2NΓ4ðQ;P −Q;K; P − KÞ. The struc-
ture of (27) indeed suggests a pinching pole similar to
(20) in the limit P → 0, whereas for other kinematic regions
δΓ3;xy ∝ ð1=NÞ. Two of the internal vertices in (27) there-
fore do not receive corrections in the limit P → 0. One may
verify that, in this limit, δΓ3;xyðK;−KÞ ¼ ðkxky=k2ÞΓ̄3ðKÞ,
such that after doing the angular average one obtains

Gxy;xy
E;R4 ðpEÞ¼

N
4

XZ
K
k2Γ̄3ðK;P−KÞΔðKÞΔðP−KÞ; ð28Þ

where to leading order in large N

Γ̄3ðK;P − KÞ ¼ k2 − 4
XZ

Q
ΔðQÞΔðP −QÞWðP;Q;KÞ

× Γ̄3ðQ;P −QÞ × ½2ðq̂ · k̂Þ2 − 1�: ð29Þ

The analytic structure of the vertex Γ̄3ðK;P − KÞ is as
follows: Expressing the propagators in terms of their
spectral functions ρðμÞ; ρDðμÞ, one can perform the analytic
continuation to real frequencies. In a first step, setting
Γ̄3ðQ;P −QÞ ¼ q2, the thermal sum over qE in (27) can be
done explicitly. Since the integrations over the arguments
of the spectral functions range over the whole real axis,
one finds that Γ̄3ðik0; ip0 − ik0Þ has branch cuts along
the whole real line for Imp0 ¼ 0, Imk0 ¼ 0, and
Imðp0 − k0Þ ¼ 0. This structure is unchanged when itera-
ting the vertex.
With the analytic structure of the vertex known, one

proceeds to evaluate (28). First, write the thermal sum as

T
X
kE

fðkEÞ ¼
I
C

dk0

4πi
coth

βk0

2
fðik0Þ; ð30Þ

with C encircling the poles at the imaginary Matsubara
frequencies k0 ¼ ikE in a counterclockwise fashion. Next,
the propagators ΔðKÞΔðP − KÞ have branch cuts at
Imk0 ¼ 0 and Imðk0Þ ¼ −pE. The additional branch cut
from the vertex is independent from k0 and hence not
relevant for the thermal sum (30). Deforming the contour C
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such that it runs along both sides of the two branch cuts,
one encounters terms such as

Γ̄3 ðik0 � 0þ; pE − ik0ÞΔðik0 � 0þÞΔðpE − ik0Þ: ð31Þ

Upon analytic continuation pE → ip0 − 0þ, one recognizes
the retarded and advanced correlators ΔR;A using (1), where
ΔRð−k0Þ ¼ ΔAðk0Þ. The leading large N contributions are
then given by combinations such as ΔRðk0ÞΔAðk0 − ωÞ,
which have singularities on either side of the real k0 axis
(pinching poles), whereas the others can be neglected.
Letting k0 → k0 − p0 in the second branch cut contribution,
only a particular analytic continuation of the vertex
function contributes, which for p0 → 0 and k0 ¼ �Ek
becomes

lim
p0→0

Γ̄3ðik0−0þ;iðp0−k0Þ−0þ;kÞjk0¼�Ek
≡FðEkÞ: ð32Þ

Clearly, this corresponds to using standard analytic con-
tinuation of Γ̄3ðK;P − KÞ first for kE and then for pE.
Assuming that FðEkÞ is real (which will be shown below),
one can then follow the same procedure that led to (25),
with the only modification arising from the resummed
vertex function. Using (10), one finds

η

s
¼ 1

4

R∞
m dE FðEÞ

βImΣðEÞ k
2n0ðEÞ

−
R∞
m dEEk2n0ðEÞ ; ð33Þ

where again k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
. This relation is exact in the

large N limit, as it contains all leading order large N
contributions to the shear viscosity and entropy density,
cf. Ref [19]. Note that, because Σ ∝ ð1=NÞ, one finds that
ðη=sÞ ∝ N in the large N limit. ThisN scaling is generic for
vector or fermionic theories [12,19], but is qualitati-
vely different from large N gauge theories where η=s ∝
OðN0Þ [6,9].
In order to get a result for η=s, one needs to know the

functions ImΣðEÞ and FðEÞ. These follow from finite-
temperature field theory calculations, see Supplemental
Material [22] and Refs. [19,29–31]. For the evaluation of
η=s, it is convenient to use quadrature to recast the integrals
in terms of sums (see Supplemental Material [22]). To this
end, construct orthogonal polynomials PnðxÞ of degree n

−
Z

∞

m
dEn0ðEÞPnðEÞPmðEÞ ¼ δn;m; ð34Þ

for n ¼ 0; 1;…; K. Expanding ½FðEkÞ=ImΣðEkÞ� ¼P∞
n¼0 bnPnðEkÞ only the coefficients b0, b1, and b2

contribute to η=s because k2 in the numerator of (33) only
involves polynomials PnðEÞ up to degree 2.
Results and universality at infinite coupling.—

Numerical evaluation of (33) for all values of the dimen-
sionless coupling λ̂ ¼ βλ is shown in Fig. 1. For weak

couplings λ̂, η=sN is large because the thermal width is
small. As the coupling is increased, I find that the ratio of
shear viscosity over entropy density is dropping monoton-
ically, but is finite in the limit of λ̂ → ∞. In this strong-
coupling limit, the numerically calculated result becomes

lim
λ̂→∞

η

s
¼ 0.42ð1Þ × N: ð35Þ

One may ask about the universality of the strong-
coupling result. To this end, consider a modification of
the action (4) to

S ¼
Z

ddX

�
1

2
∂μϕa∂μϕa þ

λ

N2
ðϕaϕaÞ3

�
; ð36Þ

where now λ is dimensionless. This action has the property
that it is a conformal field theory for all values of λ at large
N [16]. Using the same replacement σ ¼ ϕaϕa as before
and integrating out σ, one finds

Z ¼
Z

DϕDζe−
R
X
(1
2
∂μϕa∂μϕaþiζϕaϕa−ln fAi½iζðN2

3λ Þ
1
3�g): ð37Þ

At large N, the asymptotic properties of the Airy function
then give the form of the partition function as

Z ¼
Z

DϕDζe−
R
X
½1
2
∂μϕa∂μϕaþiζϕaϕaþ 2

3
ffiffiffi
3λ

p NðiζÞ32�: ð38Þ

While it may be challenging to construct R4 for this
Lagrangian for general values of λ, the strong-coupling
limit λ → ∞ of this theory is exactly equal to the strong-
coupling limit λ̂ → ∞ of Eq. (5). For this reason, one can
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η/s for 2+1d O(N) model

This Letter

FIG. 1. Shear viscosity over entropy density as a function of the
dimensionless coupling λ̂≡ βλ in the 2þ 1d OðNÞ model with
quartic self-interaction. Horizontal axis is compactified in order
to fit values λ̂ ∈ ½0;∞Þ. The numerical code to calculate this
result is publicly available from Ref. [32].
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explicitly write down R4 for this theory in the strong-
coupling limit, where the only difference is the form of the
propagator

DðKÞ ¼ 1

NΠðKÞ ; ð39Þ

cf. Eq. (11). Hence in the infinite coupling limit, the result
for the shear viscosity for (36) is identical to that of (4). It is
not hard to generalize this proof to theories with other
interactions ϕaϕa → UðϕaϕaÞ for a large class of potentials
UðxÞ, which demonstrates that (35) is the universal strong-
coupling shear viscosity over entropy ratio for a large class
of bosonic quantum field theories. The same universal
behavior was found [16] for the weak-strong ratio
½ðsλ¼∞Þ=ðsλ¼0Þ� ¼ 4

5
and for the boson in-medium mass

limλ→∞m̂ ¼ 2 ln½ð1þ ffiffiffi
5

p Þ=2�.
Summary and discussion.—In this Letter, I derived an

exact largeN expression for the ratio of shear viscosity over
entropy density for the interactingOðNÞmodel, using well-
established field theory techniques. Evaluating the expres-
sion numerically in the case of 2þ 1 dimensions, I found
the strong-coupling result (35).
Regardless of the numerical value, the present Letter

demonstrates that it is possible to calculate transport
properties at infinite coupling directly from quantum field
theory, without invoking dualities or conjectures of any
kind. While the field theory studied here may not be of
interest to most readers, it can nevertheless serve as a test
bed for strong-coupling transport, which would otherwise
be inaccessible or very hard by any other means. For
instance, having access to exact full energy-momentum
tensor correlation functions for all values of the coupling
allows one to study the onset and breakdown of hydro-
dynamics from first principles, cf. Refs. [33–35]; exact
real-time correlators also can be used to test analytic
continuation techniques employed in lattice Monte Carlo
studies [13,14], and exact results for transport coefficients
can be used as a rigorous test case for approximation
schemes that are used for, e.g., QCD [9–11].
In addition to serving as a well-defined test bed for

general-purpose tools, the present calculation may be
generalized in several ways: by, for instance, calculating
other transport coefficients such as the bulk viscosity ζ as
well as relaxation time τπ for the OðNÞ model, calculating
transport coefficients for other large N theories [36–38],
and calculating exact far-from-equilibrium real-time
dynamics at large N for a quantum field theory.
For these reasons, I am optimistic that the present result

can become useful in the future.

I am indebted to Gert Aarts for clarifying some questions
I had concerning Ref. [19], as well as providing numerical
data for η=s in the 4D OðNÞ model from this reference.

Also, I thank Scott Lawrence and Max Weiner for fruitful
discussions and Marcus Pinto for pointing out a typo in
(38). This work was supported by the Department of
Energy, DOE Award No. DE-SC0017905.
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