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We propose a new approach to obtain the momentum expectation value of an electron in a high-intensity
laser, including multiple photon emissions and loops. We find a recursive formula that allows us to obtain
the OðαnÞ term from Oðαn−1Þ, which can also be expressed as an integro-differential equation. In the
classical limit we obtain the solution to the Landau-Lifshitz equation to all orders. We show how spin-
dependent quantum radiation reaction can be obtained by resumming both the energy expansion as well as
the α expansion.
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An electron in an electromagnetic field emits photons
and the recoil it experiences is called radiation reaction
(RR) [1,2]. Classically, the standard equation is the
Abraham-Lorentz-Dirac (LAD) equation, but since it leads
to unphysical solutions (with either preacceleration, where
the particle starts to accelerate before the field turns on, or
runaways, where the particle’s momentum diverges even in
the absence of a field) it is common to replace it with the
Landau-Lifshitz (LL) equation, which is free from such
unphysical solutions. Since preacceleration occurs on
timescales that are actually within the quantum regime,
and since the LAD and LL equations agree quite well
within the classical regime (see, e.g., [3]), it is common to
view the LL equation as giving a correct description for
practical purposes. A more practical problem is how to
describe quantum RR. If RR is important one would in
general expect the particle to emit many photons, making
higher orders in α ¼ e2=ð4πÞ important. The first RR
experiments with high-intensity lasers were performed
recently [4,5] (see also [6]), and in upcoming experiments
one may expect significant quantum effects [7–11]. Clearly,
one needs some approximation to obtain higher orders in α.
Standard approaches assume [12] a0 ≔ E=ω ≫ 1 and then
approximate higher orders as incoherent products [13] of
OðαÞ photon emissions calculated with a locally constant
field (see, e.g., [7–11,24]). A question is how to take spin
into account. See, e.g., [25–27] for spin-dependent RR. In
this Letter we propose a new method for obtaining quantum
RR in high-intensity lasers. It too is based on incoherent
products of OðαÞ terms. The main differences compared to
previous approaches are: (1) We treat spin transitions using

Mueller matrices, which allows us to consider arbitrary
spin, field polarization and field shape, and, importantly,
we are not limited to large a0. (2) We consider the
contribution from loop diagrams explicitly. (3) While we
can resum the α expansion right from the start into a new
integro-differential equation, we also show that resumma-
tion methods based, e.g., on Padé approximants can be
faster.
Let pμ and Pμ be the initial and final momentum of the

electron, kμ the wave vector of the plane wave, which is
described by a gauge potential a⊥ðσÞ where [12] σ ¼ kx ¼
ωðtþ zÞ is the (rescaled) light-front time and a� ¼ 0.
Light-front coordinates are defined by v�¼2v∓¼v0�v3

and v⊥ ¼ fv1; v2g. We will focus on hkPi ¼P∞
n¼0hkPiðnÞ,

where hkPiðnÞ ¼ OðαnÞ. The reason for focusing on the
light-front longitudinal momentum (kP ¼ 2kþP−) is
because in a plane wave the probabilities of the whole
process and each intermediate step only depend nontrivially
on this momentum component. The dependence on
the initial and final spin can be expressed as
hkPiðnÞ ¼ ð1=2ÞN0 ·MðnÞ ·Nf, where N ¼ f1;ng is the
Stokes vector for spin along the unit vector n and MðnÞ
are “strong-field-QED Mueller matrices” [21,28,29].
Averaging and summing over the initial and final spin
gives f1; 0g ·M · f1; 0g. The Mueller-matrix approach has
been developed recently [21,28,29]. It allows us to obtain
OðαnÞ probabilities to leading order for long pulses or large
a0 ¼ E=ω by multiplying OðαÞ Mueller matrices. In this
case we need MC for (nonlinear) Compton scattering and
ML for the cross term between theOðα0Þ andOðαÞ parts of
the amplitude for e− → e−. In [21,28,29] we described how
to write down expressions for individual higher-order
diagrams. To use these methods to obtain RR we need a
way to evaluate all the relevant higher-order diagrams and
to resum them. Both photon emissions and loops [30]
contribute and there are 2n diagrams atOðαnÞ. More details
of this derivation can be found in the Supplemental
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Material (SM) [35]. One of the main steps is to note that
MðnÞ can be obtained by prepending a Compton scattering
or a loop step at the initial position of Mðn−1Þ, which gives
the following recursive formula:

MðnÞðb0;σÞ¼
Z

∞

σ

dσ0

b0

Z
1

0

dqfMLðb0;σ0;qÞ ·Mðn−1Þðb0;σ0Þ

þMCðb0;σ0;qÞ ·Mðn−1Þðb0½1−q�;σ0Þg; ð1Þ

where b0 ¼ kp, q ¼ kl=kp and l is the photon momentum,
and Mð0Þ ¼ b01 [Mð0Þ ¼ 1 for the probability]. The lower
integration limit has been introduced so that the products of
Mueller matrices are light-front–time ordered. The final
result is obtained by setting σ ¼ −∞. The shift b0 →
b0ð1 − q1Þ in the Compton term takes RR into account.
With M ¼P∞

n¼0 M
ðnÞ, (1) implies

∂M
∂σ ¼−

Z
1

0

dq
b0

fML ·Mðb0ÞþMC ·Mðb0½1−q�Þg: ð2Þ

This integro-differential matrix equation gives quantum RR
to all orders in α with spin taken into account. Note that
even if we are only interested in unpolarized initial and final
states, we still need to solve a matrix equation before we
can project with f1; 0g ·M · f1; 0g. Note also that (2) holds
even if a0 is not large, provided the field is sufficiently long
and the full version of MC;L is used. Equation (2) looks
similar to kinetic RR equations [10,36] (see also [37]), so
one may expect that it can be solved with similar methods.
However, in this Letter we will instead use (1) to obtain the
first MðnÞ terms before performing a resummation. It turns
out that this resummation approach can be much faster.
We consider first the classical limit. In the SM we show

that (1) leads to a geometric series in the classical limit. In
fact, we also show that the hP⊥;þi components can be
calculated in a similar way. We find

lim
b0≪1

hP−;⊥i ¼ π−;⊥ þ Δ
1þ Δ

R
dσa02

�
π0 −

Z
dσa02π

�
−;⊥

;

ð3Þ

where πμ ¼ pμ − aμ þ ð2ap − a2Þkμ=ð2kpÞ is the Lorentz
momentum, and hPþi satisfies the mass-shell condition
Pþ ¼ ðP2⊥ þ 1Þ=ð4P−Þ. This resummation [38] agrees
exactly with the exact solution to LL [40] (see also [41]
for an exact solution to LL; [10,36,42] for comparisons
between LL and kinetic equations; and [43–47] for com-
parisons between classical equations and the classical limit
of quantum RR at first order). Note that the loops are
needed even in the classical limit, cf. [46–48].
This does not mean that LAD does not agree with the

classical limit of QED, because our approximation neglects
terms that have subdominant scaling with respect to the
pulse length and/or a0. From Eq. (4.39) in [47] we see that

the difference between the LL and LAD equations atOðα2Þ
is a term proportional to a02, i.e., a term without an integral.
This term vanishes at asymptotic σ, but is also subdominant
at finite times because it has no pulse-length scaling. We
can therefore not rule out that the classical limit of all QED
contributions may agree with the LAD equation rather than
the LL equation.
In the limit of a very long pulse we have (cf. [3,49–51])

hP−i≈
p−

Δ
R
dσ0a02

hP⊥i≈
R
dσ0a02½aðσ0Þ−aðσÞ�⊥R

dσ0a02
; ð4Þ

so hP−i becomes small, hP⊥i stays Oð1Þ and hPþi
becomes large, and (since Δ ∝ p−) all components of
hPμi become independent of the initial momentum
[3,49–51]. This observation will be important for resum-
ming the α expansion in the quantum regime.
Having shown that (1) gives the expected classical limit,

we now turn to quantum RR. For simplicity we focus on
hP−i, and we sum over the final spin, i.e., Nf ¼ f1; 0g is
fixed and we have an overall factor of 2, so we use
NðnÞ ≔ MðnÞ · f1; 0g. In this first application we consider a
constant field, so the σ integrals give

R
dσn…dσ1 →

ðΔϕÞn=n!, and it is convenient to rescale NðnÞ so that

a0hkPiðnÞ ¼ TnN0 ·NðnÞ; ð5Þ

where T ¼ αa0Δϕ is our effective expansion parameter,
which can be T > 1 for large a0Δϕ. In general N has four
elements, but here we consider only initial and final states
that are either unpolarized or polarized (anti-)parallel to the
magnetic field, and then only two elements contribute.
Omitting the irrelevant elements we have N0 ¼ f1; 0g and
N0 ¼ f1;�1g for unpolarized and polarized states. We
have

NðnÞ ¼
Z

1

0

dq
nχ

fMC · Nðn−1Þðχ½1 − q�Þ þML · Nðn−1ÞðχÞg;

ð6Þ

where Nð0ÞðχÞ ¼ χf1; 0g, 1=n comes from ðΔϕÞn=n!, χ ¼
a0b0 is the quantum nonlinearity parameter (gives the
electric field in the rest frame of the electron), from [28,29]

MC ¼
 
−Ai1ðξÞ − κ Ai0ðξÞ

ξ
q
s1

AiðξÞffiffi
ξ

p

q AiðξÞffiffi
ξ

p −Ai1ðξÞ − 2
Ai0ðξÞ

ξ

!
ð7Þ

and

ML ¼
 
Ai1ðξÞ þ κ Ai0ðξÞ

ξ −q AiðξÞffiffi
ξ

p

−q AiðξÞffiffi
ξ

p Ai1ðξÞ þ κ Ai0ðξÞ
ξ

!
; ð8Þ
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where ξ ¼ ðr=χÞ2=3 with r ¼ ð1=s1Þ − 1, κ ¼ ð1=s1Þ þ s1,
s1 ¼ 1 − q and Ai1ðξÞ ¼

R∞
ξ dxAiðxÞ.

In order to compute NðnÞ we have used two completely
different methods. In the first we compute Nð1ÞðχÞ between
χ ¼ 0 and some [52] χmax and make an interpolation
function of it, which is then used in (6) to compute an
interpolation function of Nð2ÞðχÞ, and so on.
In the secondmethodwe expandNð1ÞðχÞ in a power series

in χ, which is then used to obtain a power series of Nð2ÞðχÞ
and so on, see the SM.This givesNðnÞ ¼ χ1þn

P
M
m¼0 a

ðnÞ
m χm.

As illustrated in Fig. 1, the coefficients have alternating sign
and grow factorially am ∼ ð−1Þmm!. The χ expansion is
therefore asymptotic with zero radius of convergence and
needs to be resummed. There is no unique resummation
method (unless, of course, one is able to find an exact
expression). Different resummations are obtained bymatch-
ing the series onto different (sums of) special functions.
Recent examples involve, e.g., the Meijer-G or hypergeo-
metric functions [23,53,54] (see [55] for further applications
in strong-field QED). Such resummations require fewer
terms, but usually some extra information, e.g., about the
opposite limit (large χ in our case). However, in the present
case, we can without problems obtain a large number of
terms quickly. We can hence use the general Borel-Padé

resummation method [56–65], which only requires the aðnÞm

coefficients. From the truncated series one first obtains a

truncated Borel transform, BðnÞ
M ðtÞ ¼PM

m¼0ð1=m!ÞaðnÞm tm.

Nextwe projectwith the initial Stokes vector,aðnÞm ≔N0 ·a
ðnÞ
m ,

and construct a Padé approximant PB½I=J�ðtÞ ¼P
I
i¼0 cit

i=ð1þPJ
j¼1 djt

jÞ ¼ BNðtÞ þOðtNþ1Þ. The result
is then obtained from the following Laplace integral:

N0 ·N
ðnÞ
re ðχÞ ¼ χ1þn

Z
∞

0

dt
χ
e−t=χPB½I=J�ðtÞ: ð9Þ

Using either of these two approaches we obtain a set of
functions, NðnÞðχÞ, for 0 < χ < χmax. The result for an
unpolarized initial state is shown in Fig. 2. In the low χ limit
we find convergence towards the classical prediction.
In general one would also expect the α expansion to be

asymptotic. However, an approximation does not have be
asymptotic, see, e.g., [60,66–69] for the weak and strong
field approximations of the QED effective action. (See
[70,71] for other recent α resummations.) In classical RR,
LAD leads to an asymptotic series [72], while LL has a
finite radius of convergence. Since the coefficients we have
calculated suggest a finite radius of convergence, we
propose to resum the α expansion with a Padé approximant

a0hkPi ≈ a0hkPire ¼ χ þ
P

I
i¼1 AiðχÞTi

1þPJ
j¼1 BjðχÞTj ; ð10Þ

where Ai and Bi are obtained by matching a0hkPire ¼
χ þPIþJ

n¼0 T
nN0 ·NðnÞ þOðTIþJþ1Þ. Since we expect a

finite limit for T ≫ 1, we take I ¼ J. This makes it possible
for hkPire → 0 as T → ∞, which is what we expect
[cf. (4)]. If we do not impose this limit, then we can take
jAI=ðχBIÞ þ 1j as an upper-limit estimate on the relative
error (the error goes to zero as T → 0). Alternatively, we
can demand hkPire ¼ Oð1=TÞ for T ≫ 1, which fixes
AI ¼ −χBI . LL predicts that the leading order in T ≫ 1
is independent of the initial momentum (4). If we assume
that holds in general, then the Oð1=TÞ term must be the
same as the classical prediction, which implies

AI ¼ −χBI BI ¼
2

3
ðAI−1 þ χBI−1Þ: ð11Þ

Figure 3 shows that the resummation (10) converges
quickly. On the scale of this plot, the I ¼ 4 and I ¼ 5
resummations are virtually indistinguishable, which are

FIG. 1. The ratios of neighboring coefficients in the χ ex-
pansion for f1; 0g · am. The different lines correspond to hkPið1Þ
(top) to hkPið10Þ (bottom). The linear scaling at higher orders
shows that the coefficients grow factorially and the χ expansion is
hence asymptotic.

FIG. 2. The ratios Nðnþ1Þ=ðχNðnÞÞ of neighboring coefficients
in the α expansion as a function of χ, for an unpolarized initial
state, NðnÞ ¼ f1; 0g ·NðnÞ. The ratios have been divided by χ in
order to show the convergence to the classical limit
Nðnþ1Þ=NðnÞ → −2χ=3 for χ → 0.
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obtained from the first eight and tenNðnÞ terms. For short to
moderately large T, we see that the classical prediction
overestimates the effect of RR, as expected [1]. However,
for larger T the classical and quantum predictions seem to
converge. This is what one would expect if the leading
order at T ≫ 1 is independent of the initial momentum.
This motivates us to use the modified Padé approximant
based on (11). With the two extra conditions in (11) we
indeed find an even faster convergence, with a decent
approximation already with I ¼ 2, i.e., using only theOðαÞ
and Oðα2Þ terms.
These resummations can be comparedwith the solution to

the integro-differential equation corresponding to (6), i.e.,

∂N
∂T ¼

Z
1

0

dq
χ
fMC · Nðχ½1 − q�Þ þML · NðχÞg; ð12Þ

where N ¼P∞
n¼0 T

nNðnÞ and NðT ¼ 0Þ ¼ χf1; 0g. We
have solved (12) numerically with the Euler method and

found good agreement with the resummations above.
However, it takes much more time to solve (12) because
we need Tmax=dT steps, which is typically more than the ten
(or fewer) steps we needed in the resummation approach.
At T ≫ 1 we have the ansatz N ≈ fc=T þOð1=T2Þ;

Oð1=T2Þg, so ∂N=∂T ¼ Oð1=T2Þ, which gives a condition
for c since the right-hand side of (12) is not automatically
Oð1=T2Þ. As mentioned, we expect c to be independent of
χ, and now we can confirm that this is consistent with (12).
In order to obtain NðnÞ from Nðn−1Þ we need to calculate

both components of Nðn−1Þ, even if we at the end are only
interested in unpolarized particles. Hence, in calculating the
results above we have obtained the necessary information
to study a polarized initial state as a byproduct. We show in
the SM for the difference in the final momentum due to the
initial spin

lim
χ≪1

a0
2
kΔhPi ¼

X∞
n¼1

f0; 1g ·NðnÞTn ¼ −
3

2
χ2

ln ½1þ 2
3
χT�

ð1þ 2
3
χTÞ2 :

ð13Þ

We see that ΔhPi too becomes independent of χ to leading
order in T ≫ 1, although this time the next-to-leading order
is only logarithmically suppressed. Another difference is
that (13) is nonmonotonic with a maximum jΔhPij at
T ∼ 1=χ.
The full quantum result can be obtained as described

above. Although (13) might suggest using a resummation
involving logarithms, we still find a fast convergence with
Padé approximants as in (10), except that P− > 0 implies
that jΔhPij must be smaller than hPi↑ þ hPi↓ and for that
to hold at large T we need J > I. In practice, different
choices of I and J can give good approximations, and a
“wrong” choice just means that we need to include more
terms. Figure 4 shows that the classical prediction over-
estimates the peak of jΔhPij by about a factor of 2 for
χ ¼ 0.2, but is close to the quantum result for large T.

FIG. 3. Final result for χ ¼ 0.2 (upper) and χ ¼ 0.7 (lower) as a
function of T ¼ αa0Δϕ. Padé½I=I� corresponds to the resumma-
tion in (10) with Ai and Bi determined from the first 2I
coefficients f1; 0g ·NðnÞ, 1 ≤ n ≤ 2I. Padé’½I=I� is obtained from
only f1; 0g ·NðnÞ, 1 ≤ n ≤ 2I − 2, while the remaining two
coefficients are determined from (11). The “no resum.” line is
just the sum of Oðα0Þ and OðαÞ.

FIG. 4. Difference in the final momentum for initial state with
spin up and down and χ ¼ 0.2.
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In conclusion, we have developed a new approach for
spin-dependent quantum RR using products of Mueller
matrices for photon emissions and loops. We have found a
recursive formula which gives OðαnÞ from Oðαn−1Þ. In the
classical limit we find the solution to LL to all orders. We
obtain quantum RR either by resumming the recursive
formula into an integro-differential matrix equation, or by
resumming the α expansion with Padé approximants, which
converge quickly. The OðαnÞ terms in the second approach
can be obtained either numerically or by expanding each
OðαnÞ in χ and resumming the resulting asymptotic series
with, e.g., the Borel-Padé method.
The first laser-based RR experiments were performed

just a couple of years ago [4,5], and further laser-electron
experiments are planned for the near future, e.g., at LUXE
[73,74] and FACET-II [75]. The experiment in [5] has
already hinted that standard locally-constant-field (LCF)
approaches might give significant discrepancies. One
source of discrepancy within LCF could be spin and loop
effects not taken into account in standard LCF approaches,
but which can be included in a LCF version of our
approach. If instead a0 is not large enough for any LCF
treatment, but if the field is long, then one can try our
approach with a locally-monochromatic-field (LMF)
approximation. If a0 is not large enough for LCF and
the pulse not long enough for LMF, but if a0 is still
moderately large and the pulse still moderately long, then
one could try our approach with the exact OðαÞ Mueller
matrices [28,29], which would also be relevant for long
pulses with some asymmetry that prevents a LMF treat-
ment. In order to compare with experiments such as [5], it
would be useful to generalize our approach to the momen-
tum spectrum.
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