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Active control of quantum systems enables diverse applications ranging from quantum computation to
manipulation of molecular processes. Maximum speeds and related bounds have been identified from
uncertainty principles and related inequalities, but such bounds utilize only coarse system information and
loosen significantly in the presence of constraints and complex interaction dynamics. We show that an
integral-equation-based formulation of conservation laws in quantum dynamics leads to a systematic
framework for identifying fundamental limits to any quantum control scenario. We demonstrate the utility
of our bounds in three scenarios—three-level driving, decoherence suppression, and maximum-fidelity
gate implementations—and show that in each case our bounds are tight or nearly so. Global bounds
complement local-optimization-based designs, illuminating performance levels that may be possible, as
well as those that cannot be surpassed.
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In this Letter, we develop a framework for computing
fundamental limits to what is possible via control of
quantum systems. We show that quantum control problems
can be transformed to quadratically constrained quadratic
programs (QCQPs), with generalized probability conser-
vation laws as the constraints, adapting a mathematical
approach recently developed for light-matter interactions
[1,2]. The QCQP formulation enables global bounds via
relaxations to semidefinite programs [3,4]. We demonstrate
the power and utility of our method on three prototype
systems: (1) three-level system driving, where our bounds
incorporate sophisticated information about interference
between levels and can account for constraints on undesir-
able transitions (as needed in transmons [5], for example),
(2) upper bounds to the suppression of decoherence, and
(3) the maximum fidelity of a control-based implementa-
tion of a single-qubit Hadamard gate. In each case, we
supplement our bounds with many local-optimization-
based solutions, showing that they come quite close to
(and in some cases achieve) our bounds, suggesting that our
bounds are tight or nearly so. Our framework applies to
open and closed systems, can be extended to related
domains in NMR [6–8] and quantum complexity [9–11],
and should reveal the limits of what is possible with
quantum control.
Quantum control [12–16] refers to the design and

synthesis of efficient control sequences that drive a quan-
tum system to maximize a desired objective, such as
maximizing overlap with a target state or minimizing error
in the implementation of a gate operation. Recent experi-
ments have demonstrated the power of optimal control for
wide-ranging applications [17–22]. Because the wave

function jψðtÞi that represents a quantum state is nonlinear
in the control parameter εðtÞ, it is generically difficult to
identify globally optimal controls. One strategy is to use
local numerical optimization over the control parameters
[e.g., gradient-ascent pulse engineering (GRAPE) [6,23–
25], the Krotov method [26–31], and the chopped random
basis technique [32,33] ], optimizing over many initial
conditions in the hopes of identifying high-performance
local optima. Yet, except in the simplest of systems, one is
left uncertain about the best performance possible.
Alternatively, there are a variety of global bounds [34–
55]—most famously, the Mandelstam-Tamm (MT) bound.
The MT bound is a prototype of “quantum speed limits,”
which more generally have varying levels of complexity but
are essentially time-energy uncertainty relations [34–
37,40,44,45,52–56]. The energy measure is typically a
matrix norm of the Hamiltonian, but more complex details
of the system interactions are not captured. Another class of
bounds is obtained by analytically solving Pontryagin’s
maximum principle [57], which is only possible in simple
cases such as two-level systems [38,39,42,43,46–48].
Consequently, meaningful, accurate bounds cannot be
computed for most quantum control systems of interest.
Formulation.—We consider a Hamiltonian of the form

H0ðtÞ þH0
cðtÞ ¼ H0ðtÞ þ εðtÞHcðtÞ, where H0 is the non-

controllable part of the Hamiltonian, H0
c is the controllable

part, and ε is the control parameter to be optimized. We
assume the control parameter is bounded between 0 and
εmax (any other minimum value can be shifted to 0 by
replacing H0 with H0 þ εminHc). Our method generalizes
to any number of control parameters (cf. Supplemental
Material [58]), but for simplicity we assume one

PHYSICAL REVIEW LETTERS 127, 110506 (2021)

0031-9007=21=127(11)=110506(8) 110506-1 © 2021 American Physical Society

https://orcid.org/0000-0001-6678-6278
https://orcid.org/0000-0003-2745-2392
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.110506&domain=pdf&date_stamp=2021-09-10
https://doi.org/10.1103/PhysRevLett.127.110506
https://doi.org/10.1103/PhysRevLett.127.110506
https://doi.org/10.1103/PhysRevLett.127.110506
https://doi.org/10.1103/PhysRevLett.127.110506


throughout this Letter. Any smooth, continuous, bounded
control can be approximated with arbitrary accuracy by a
“bang-bang” binary control that only takes the values 0 and
εmax (cf. Supplemental Material [58]), so we use bang-bang
controls in our formulation. Instead of the differential
Schrödinger equation for the time-evolution operator
Uðt; t0Þ (for an initial time t0), we instead start with an
integral form (equivalent to the Dyson equation [67,68] in
the interaction picture),

Uðt; t0Þ ¼ U0ðt; t0Þ −
i
ℏ

Z
T

t0

Gþ
0 ðt; t0ÞH0

cðt0ÞUðt0; t0Þdt0;

ð1Þ

where U0 and Gþ
0 are the time-evolution operator and

retarded Green’s function in the absence of controls [i.e.,
for H0ðtÞ], and T is the final time. To derive conservation
laws, we start by taking the product of Eq. (1) with
U†ðt; t0ÞH0

cðtÞDiðtÞ from the left and integrating from an
initial time t0 to T,

Z
T

t0

U†ðt; t0ÞH0
cðtÞDiðtÞUðt; t0Þdt

þ i
ℏ

Z
T

t0

Z
T

t0

U†ðt; t0ÞH0
cðtÞDiðtÞGþ

0 ðt; t0Þ

×H0
cðt0ÞUðt0; t0Þdtdt0

¼
Z

T

t0

U†ðt; t0ÞH0
cðtÞDiðtÞU0ðt; t0Þdt: ð2Þ

The variable DiðtÞ can be any time-dependent operator
and is an optimization hyperparameter below in Eq. (5);
intuitively, allowing different possible choices of Di ena-
bles the isolation of particular times and elements in Hilbert
space for which Eq. (2) should be satisfied. The variableHc
is effectively a renormalization that simplifies the probabi-
listic interpretation below; equivalently, it can be omitted.
The constraint of Eq. (2) depends on both the time-
evolution degrees of freedom UðtÞ and the control variable
degrees of freedom εðtÞ. However, if we define a new
variable ΦðtÞ ¼ εðtÞHcðtÞUðt; t0Þ, this variable (the analog
of a polarization field in electrodynamics [1,69]) can
subsume both. Crucially, we can replace any instance of
εðtÞ with εmax. This can be thought of as a two-step
simplification: one could restrict the domains of the
integrals to only times in which the control is on, in which
case such a replacement is trivial. Next, εðtÞ only appears in
a term of the form Φ†ε−1Φ, which is zero even when
εðtÞ ¼ 0, due to the quadratic dependence onΦ. Hence, we
can extend the domain of the integrals back to the entire
time interval from t0 to T. Such “domain obliviousness” [1]
arises from our inclusion of εðtÞ andU†ðt; t0Þ in the product
term. Finally, we have the constraints

Z
T

t0

Z
T

t0

Φ†ðtÞDiðtÞ
�
H−1

c ðtÞ
εmax

δðt − t0Þ þ i
ℏ
Gþ

0 ðt; t0Þ
�

×Φðt0Þdtdt0

¼
Z

T

t0

Φ†ðtÞDiðtÞU0ðt; t0Þdt; ð3Þ

where H−1
c is taken to be the pseudoinverse if Hc is not

invertible. For any DiðtÞ, Eq. (3) is a quadratic equation in
the variable ΦðtÞ; the set of all possible DiðtÞ imply an
infinite number of quadratic constraints.
Equation (3) can be interpreted as a generalization of

probability conservation. At any time t1, conservation of
probability implies unitarity of the time-evolution operator
Uðt1; t0Þ, such that U†U ¼ I , where I is the identity
operator. From the integral equation for U, Eq. (1), the
difference U†U − I can be written

U†ðt1; t0ÞUðt1; t0Þ − I

¼ 1

ℏ2

Z
t1

t0

Z
t1

t0

Φ†ðt00; t0ÞU0ðt00; t0ÞΦðt0; t0Þdt0dt00

þ 2

ℏ
Im

Z
t1

t0

U0ðt0; t0ÞΦðt0; t0Þdt0: ð4Þ

If we take the imaginary part of Eq. (3), and chooseDiðtÞ to
be the identity operator from t0 to t1 (and zero otherwise),
the resulting constraint is precisely the one that requires the
right-hand side of Eq. (4) to be zero (cf. Supplemental
Material [58]). In other words, a subset of the constraints
of Eq. (3) are those that enforce unitary evolution at
all times. (In an open system described by a density matrix,
unitarity is not preserved and the corresponding constra-
ints instead represent conservation of probability flow,
cf. Supplemental Material [58].)
Although our derivation implies only that the conserva-

tion laws of Eq. (3) are necessary conditions for describing
quantum evolution, one can show that they are sufficient as
well: any ΦðtÞ that satisfies all possible versions of Eq. (3)
implies a corresponding time-evolution operator Uðt; t0Þ
that satisfies Eq. (1) (cf. Supplemental Material [58]).
Hence, we can replace the differential or integral dynamical
equations with the conservation-law constraints of Eq. (3).
The optimal-control problem, for any objective f that
is a linear or quadratic function of the time-evolution
operator U, and therefore a linear or quadratic function
of Φ ¼ εHcU, is then the QCQP,

max
Φ

fðΦÞ
such that Eq: ð3Þ satisfied for allDiðtÞ: ð5Þ

We assume the problem has been discretized in any
standard basis [70]. If we denote Φ to be a single
column vector containing the full discretization of ΦðtÞ,
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Eq. (5) is a maximization of an objective of the form
Φ†AΦþ Reðα†ΦÞ, where A is Hermitian, subject to
constraints of the form Φ†BiΦþ Reðβ†iΦÞ ¼ 0 for all i.
QCQPs are generically NP hard [71] to solve, but bounds
on their solutions can be computed efficiently after semi-
definite relaxation (SDR). SDRs transform quadratic forms
Φ†AΦ to equivalent linear forms Tr AX, where X is a rank-
one positive semidefinite matrix, then drop the rank-one
constraint. Finally, we are left with an objective of the form
Tr AXþ Reðα†ΦÞ subject to the constraints that TrBiX þ
Reðβ†iΦÞ ¼ 0 for all i and X≽0, which is a semidefinite
program whose global optimum can be computed via
interior-point methods [4,72]. As the bounds are computed
over all possible matrices Di, we label them “D-matrix
bounds.” This framework applies broadly across quantum
control; next, we demonstrate bounds for three prototypical
systems.
Applications.—First, we compute bounds on driving

three-level quantum systems. We consider two three-level
systems described by Hamiltonians H¼ℏ

P
i¼1;2ωjjiihij−

εðtÞPi;j¼0;1;2μijjiihjj: one modeling an asymmetric double-
well potential, with exact parameters from Sec. 2.8 of
Ref. [13] and given in the Supplemental Material [58],
and a second modeling a weakly nonlinear harmonic
oscillator with nearest-level couplings, as is typically used
to model a transmon qubit [5,73]. (We consider both
systems, as they have different features: the first, couplings
between all levels, and the second, small anharmonicity with
hard-to-avoid leakage.) In each case, we assume the system
starts in the ground state j0i and that we want to drive
it to the first excited state j1i as rapidly as possible. We
denote the probability of occupying state i at time t by

PiðtÞ ¼ jhijψðtÞij2. There are two classes of bounds that we
can compute: for a given amount of time T, the maximum
probability in j1i, P1ðtÞ—or, iteratively, the minimum
amount of time to achieve near-unity probability in j1i.
The black curve of Fig. 1(a) is the computed bound on

P1ðtÞ for the asymmetric double-well model, for a
bounded-control field with jεðtÞj ≤ 0.15. The shaded
region of the figure is impossible to reach: our bounds
indicate that any such evolution would necessarily violate
at least one of the conservation laws. The gray lines are the
results of local computational optimizations; we imple-
mented a gradient-ascent optimization (similar to GRAPE)
as described in the Supplemental Material [58], for many
different final times and initial pulse sequences. The gap
between the local optimizations and the bounds arises from
two sources—looseness in the bounds (from the SDR) or
insufficient local exploration of the optimal pulses—
though it is hard to pinpoint which source is more
responsible. Also included in the figure are data points
corresponding to evaluations of other bounds as applied to
this problem: Mandelstam-Tamm, Margolus-Levitin (ML),
and Refs. [54,55]. It takes some effort to map the various
bounds to this problem, with varying degrees of loose-
ness, which we discuss in detail in the Supplemental
Material [58]. In particular, however, one can see that each
of these bounds predicts minimal times an order of
magnitude smaller than our approach. The inset provides
a likely explanation: the optimal trajectory (highlighted
in red) first populates the second excited state, then
transitions to the first excited state through appropriate
driving. Such complex dynamics cannot be captured by any
previous bound approaches, but can be captured by our
approach.

(a) (b) (c)

(d)

FIG. 1. (a) Bounds on the maximum probability in state j1i as a function of time (solid black) for an asymmetric double-well potential,
with shading above to indicate impossible values. Gray lines represent pulse evolutions optimized by gradient ascent, with the red line
the very best evolution for final time 30. Inset: evolution of probabilities in states j0i, j1i, j2i for the optimal control, showing the
complex dynamics captured by the bound. Black diamonds: evaluations of bounds of Mandelstam-Tamm, Margolus-Levitin, and
Refs. [54,55] for this problem. (b),(c) Analogous to (a) but for a three-level model of a transmon qubit. (d) Incorporation of an additional
constraint requiring small maximum allowable excitation probabilities of state 2. The bound on the maximum state-j1i probability (at
time 5) decreases accordingly. The time to achieve 99% state-j1i probability increases substantially with smaller allowed leakage rates.

PHYSICAL REVIEW LETTERS 127, 110506 (2021)

110506-3



Figures 1(b)–1(d) show results for the transmon-qubit
model, with ω1 ¼ 0.19, ω2 ¼ 0.37, μ10 ¼ μ01 ¼ −1, μ21¼
μ12¼−

ffiffiffi
2

p
(all other μij ¼ 0), and jεðtÞj ≤ 0.3. Figures 1(b)

and 1(c) are the transmon analogs of Fig. 1(a). The key
novelty that is possible in this case is the addition of a
constraint on the excitation probability of the second
excited state j2i. Such “leakage” can be highly detrimental
to the practical control of such systems, as they can open up
additional decoherence channels [74]. In our approach, we
can simply add to Eq. (5) a (quadratic) constraint on the
maximum allowed probability in j2i. In Fig. 1(d), we show
the bound for maximum P1ðtÞ subject to varying con-
straints on the maximum allowed P2ðtÞ, at time t ¼ 5,
which shows the dramatic reduction that is required if
state-j2i transitions are to be avoided. Conversely, also in
Fig. 1(d), the minimum time for near-unity first-state
probability increases dramatically with more stringent
constraints (red). Such constraints could not be incorpo-
rated into previous bound approaches.
A second example we consider is the extent to which one

can prevent decoherence and dissipation due to interactions
with the environment. The design of pulses to achieve such
a goal has been studied extensively through semiheuristic
“dynamic decoupling” design schemes [75–78], which
may not be (and in many cases are not) globally optimal.
A typical model of environmental effects is a spin system
interacting with a spin bath. We consider a spin-bath system
[79] with Hamiltonian H0 ¼ HS þHE þHint, where
HS is the system Hamiltonian (two levels split by
energy ℏω0), HE is the Hamiltonian of the environmental
bath [HE ¼ −J

P
N
j¼1 ðσxjσxjþ1 þ λσzjÞ], and Hint is the

interaction between the system and the bath,
Hint ¼ −νj↓ih↓j ⊗ P

j σ
z
j, with ω0 ¼ π, J ¼ 1, λ ¼ 0.5,

and ν ¼ 2 here. The control Hamiltonian here is Hc ¼
εðtÞσx on the system only. Rather than use an approxima-
tion to the environmental coupling [80], we model the full
dynamics of the wave function jψðtÞi. As a result, we only
use a bath of size N ¼ 2. Despite the bath being unreal-
istically small, it provides a qualitatively accurate
description of the decoherence process [81] and serves
as a proof of principle. The system initial state is
ð1= ffiffiffi

2
p Þj↑i þ ð1= ffiffiffi

2
p Þj↓i, while the spin bath is in its

ground state. The system density matrix ρS is found by
tracing out the bath part of the full density matrix,
ρðtÞ ¼ jψðtÞihψðtÞj. The objective is to maximize jρS12j,
the magnitude of the off-diagonal elements of ρS, which
represents the coherence of the system state. Instead of
working with the absolute value (or its square, which is
quartic in jψi), we equivalently maximize f ¼ ReðρS12eiϕÞ
for a given ϕ, and then iterate over possible values of ϕ
between 0 and 2π. Figure 2 shows the bounds on maximal
coherence as a function of time for three different bounded
controls: εmax ¼ 0.5, 1, and 2. Also included are actual
evolutions for three cases: without control, with a pulse

designed by gradient ascent, and pulses designed by a
bounded-control version of dynamical decoupling termed
“Eulerian Carr-Purcell” [82]. It is possible with strong
controls to increase coherence at short times [as is par-
ticularly visible in Fig. 2(c)], but that would not be possible
over longer timescales. We see that the bounds appear
nearly tight and provide information about what levels of
coherence are possible as a function of time.
For the third application, we consider the implemen-

tation of a single-qubit Hadamard gate. For a two-
level system with Hamiltonian H ¼ ℏω0σz − μεðtÞσx
(ω0 ¼ 0.0784, μ ¼ 1) [13], the target time-evolution oper-
ator is given by ð1= ffiffiffi

2
p Þð 1

−1
1
1
Þ. The objective is to compute

the maximal fidelity of a quantum gate at time T; for
computational purposes, it is easier to work with the square
of fidelity, f2 ¼ 1

4
jTrfU†

tarUðTÞgj2. Identifying when the
bound approaches 1 then indicates the minimum possible
time to perform a gate operation. We consider a bounded
control with εmax ¼ 1. A crucial difference in the gate
problem is that multiple inputs map to multiple outputs;
the off-diagonal elements of the D matrices in Eq. (3)
inherently enforce the corresponding orthogonal-evolution
requirement. Figure 3 shows the fidelity bound as a
function of time (solid black), along with time evolutions
for locally optimized pulse sequences in the colored lines

FIG. 2. For a spin system interacting with a spin bath, the D-
matrix approach enables bounds on maximum possible coherence
as a function of time. The black solid line bounds the magnitude
of the off-diagonal element of the system density matrix jρS12j for
varying maximum control amplitudes εmax. The time evolutions
of jρS12j for pulses designed by gradient-ascent (solid gray) and
Eulerian Carr-Purcell (black dash lines) methods can closely
approach the bounds.
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(optimized for different end times). The bound is tight, or
very nearly so, across all times.
Conclusions.—Quadratic constraints representing gener-

alized probability-conservation laws offer a framework for
quantum control bounds. We have shown that this method
can be significantly tighter than previous bounds and more
widely applicable. There are further extensions that may be
possible as well: in nanophotonic design problems, a
hierarchy of bounds with varying analytical and semi-
analytical complexity have been discovered as subsets of
the D-matrix constraints [1,2,59,83–93]; the same may be
possible in quantum control. In particular, environment-
induced decoherence and dissipation are similar to
material-absorption losses in electromagnetism and may
be amenable to general analytical bounds [83,87]. From an
algorithmic perspective, there are significant computational
speed-ups that should make the bound computations
competitive with local optimizations, as a function of the
number of degrees of freedom of the system N (the product
of time steps and Hilbert-space dimensionality). Global
optimization is presumably NP hard; local optimizations
require OðNÞ time for each iteration and a number of
iterations that may be large but independent of N. To find
good local optima, however, requires restarting the search a
number of times proportional to the number of local
optima, which should scale at least as OðNÞ, for a total
scaling of at least OðN2Þ (which is likely optimistic). For
the bound computations, the simple implementation
used for this Letter, using all possible constraints and
interior-point methods oblivious to the structure of the
problem, scales as OðN4.5Þ [94]. Clever selection of the
constraint matrices [1] can reduce the scaling to OðN3.5Þ,
while exploitation of the integral-operator’s structure (e.g.,
via fast-multipole-type methods [95,96]) should further
improve the scaling to OðN2.5Þ, making it highly

competitive with local design methods. More broadly,
our approach and extensions thereof can be applied to
problems across the quantum-control landscape, ranging
from speed limits and gate fidelity to areas like NMR [6–8]
and quantum complexity [9–11].
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