
Instantaneous Normal Modes Reveal Structural Signatures for the Herschel-Bulkley
Rheology in Sheared Glasses

Norihiro Oyama,1,2,* Hideyuki Mizuno,1 and Atsushi Ikeda1,3
1Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan

2Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
3Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo,

Komaba, Tokyo 153-8902, Japan

(Received 25 November 2020; accepted 11 August 2021; published 3 September 2021)

The Herschel-Bulkley law, a universal constitutive relation, has been empirically known to be applicable
to a vast range of soft materials, including sheared glasses. Although the Herschel-Bulkley law has attracted
public attention, its structural origin has remained an open question. In this Letter, by means of atomistic
simulation of binary Lennard-Jones glasses, we report that the instantaneous normal modes with negative
eigenvalues, or so-called imaginary modes, serve as the structural signatures for the Herschel-Bulkley
rheology in sheared glasses.
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Many soft materials are empirically known to obey a
universal constitutive relation, or the so-called Herschel-
Bulkley (HB) law hσi − σY ¼ A_γn [1], where hσi is the
steady-state average of the shear stress σ, σY is the yield
stress, _γ is the strain rate, n is the HB exponent, and A is a
coefficient. Examples encompass, for instance, foams [2],
emulsions [3,4], microgel suspensions [5,6], soft athermal
particles [7,8], blood [9], vegetables, and fruits [10].
Experiments [11,12] and numerical simulations [13–16]
have confirmed that glasses, the target of this Letter, also
exhibit HB-type rheological behaviors. Despite the
ubiquity of the HB law, however, its structural origin
remains an open question, even after more than 90 years
since the original paper [1].
In this Letter, we explore the structural signatures of the

HB law in sheared glasses by means of atomistic simu-
lations. We first show that the shear stress σ suffers from
finite size effects and thus that the HB exponent cannot be
determined by direct fitting. To resolve this problem, we
rely on the characteristic structural information of plastic
events, or avalanches, which are responsible for the
complex rheological response [17]. In particular, we
numerically demonstrate that the instantaneous normal
modes (INMs) [18–23] allow us to extract structures of
avalanches: so-called imaginary INMs (Im-INMs), which
have negative eigenvalues, correspond to shear transforma-
tions (STs), the elementary processes of avalanches [24].
A phenomenological argument based on the criticality of
yielding transition further enables us to determine the HB
exponent n from the shear rate dependence of the statistics
of Im-INMs. The obtained value of n is validated by the
scaling collapse of the shear stress. With all these results,
we conclude that Im-INMs serve as the structural signa-
tures of the HB law in sheared glasses.

System setup.—We employ a two-dimensional (d ¼ 2)
glass system introduced in Ref. [25]. The interparticle
interaction is described by the Lennard-Jones potential with
smoothing terms that guarantee the smoothness of potential
and force at the cutoff distance rcij ¼ 1.3dij, where dij
determines the interaction range between particles i and j. To
avoid crystallization, we consider a 50∶50 binary mixture of
particles with an equal mass m and different interaction
ranges. The interaction ranges for different combinations of
particle types are dSS ¼ 5=6, dSL ¼ 1.0, and dLL ¼ 7=6,
where subscripts S and L distinguish different species of
particles. The energy scale ϵij ¼ ϵ ¼ 1.0 is set to be
constant. Throughout this Letter, physical variables are
nondimensionalized by the length unit dSL, the mass unit
m, and the energy unit ϵ. We fix the number density to be
ρ ¼ N=L2 ∼ 1.09. Initial configurations are obtained by
minimizing the potential energy of randomly generated
particle distributions. The thermal fluctuations are ignored.
We apply external shear with different rates. At each

numerical step, purely affine shearing deformation of strain
Δγ is applied first, and then the nonaffine dynamics are
solved by integrating the equations of motion under the
Lees-Edwards boundary condition [26]. To dissipate the
input energy, the drag force proportional to the nonaffine

velocity δvi is exerted on each particle as f dragi ¼ −Γvi
[17,27], with Γ ¼ 1. To tune the shear rate, we fix the strain
step at Δγ ¼ 1.0 × 10−7 and change the time step Δt. By
this protocol, plastic events are detected with the same
resolution regardless of the shear rate _γ.
Flow curves of different system sizes.—We start with the

results of flow curves, or the plot of the stress σ as a
function of the shear rate _γ, of different system sizes. We
prepared Ns ¼ 8 samples for each system size and applied
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simple shear at different rates in the range of
2 × 10−5 ≤ _γ ≤ 2 × 10−2. For each sample and shear rate,
we calculated the mean steady-state stress σ̄ from the data
in the range of 1 ≤ γ ≤ 4, where γ is the total amount of the
applied strain. In Fig. 1(a), we plot the sample-averaged
steady-state stress hσi≡ ð1=NsÞ

PNs
i σ̄i of different system

sizes as functions of _γ. While the results of different system
sizes match very well at high rates, they exhibit discrep-
ancies at low rates. Because of these finite size effects, it is
not clear which part should be fitted, and we cannot
determine the HB parameters, namely, the yield stress
σY and the HB exponent n, by direct fitting. Note that,
while some previous studies have reported system-size-
dependent flow curves consistent with our results [28–31],
such finite size effects were not observed in Refs. [13,16].
The criticality of the yielding transition allows us to

estimate the yield stress σY , with the finite size effects being
properly taken into account. First, given the criticality, it is
natural to set the following two scaling Ansätze: ξ ∼ Δσ−ν
and _γ ∼ Δσβ, where Δσ ≡ hσi − σY stands for the distance
to the critical point, ν and β are critical exponents, and ξ is
the characteristic length. In the current situation, ξ corre-
sponds to the average spatial expansion of avalanches [32].
These avalanches are composed of multiple STs or the
elementary processes of plastic events [24].
Now, let us consider a system under athermal quasistatic

(AQS) shear, where the thermal fluctuations are absent and
shear is imposed quasistatically. Since the characteristic
length reaches the system size (ξ ¼ L) in this situation,
utilizing the so-called statistical tilt symmetry [32–34], we
can express the system size dependence of the steady-state
average stress σ0ðLÞ and its fluctuations δσ0ðLÞ as σ0ðLÞ ¼
σY þ k1L−1=ν and δσ0ðLÞ ¼ k2L−1=ν, respectively [32],
where k1 and k2 are nonuniversal constants. Because ν
is positive by definition, the thermodynamic limit (L → ∞)
gives the intrinsic yield stress σoð∞Þ≡ σY , which is

accompanied by the disappearance of fluctuations
δσ0ð∞Þ ¼ 0. We performed AQS simulations, for which
details are found in Ref. [25], and measured σ0 as a function
of δσ0, as shown in Fig. 1(b). By extrapolating the data,
we obtained the value of the intrinsic yield stress as
σY ≈ 3.753. We note that the degree of system size
dependence depends on the details of systems, as reflected
by nonuniversal coefficients k1 and k2 [13,16,28–31].
The statistical tilt symmetry further enables us to derive a

scaling relation n ¼ 1 − z=ðd − df þ zÞ that provides the
value of the HB exponent n, where z is defined as T ∼ ξz, T
is the average time duration of avalanches of size ξ, and df
is the fractal dimension of avalanches [32,34]. However,
while df can be measured by AQS simulations as df ≈
1.034 [25], z cannot be measured in particle-based simu-
lations, in principle [35]. Thus, we cannot utilize this
scaling relation. To bypass this problem, we need another
way to estimate n.
Instantaneous normal modes.—We turn our attention to

the structural signatures of plastic events, which are
responsible for the complex rheological behaviors [17].
In the case of systems under AQS shear, normal mode
(NM) analysis has revealed that the onset of plastic events
can be captured by the minimum eigenvalue of the
dynamical matrix or the Hessian of the potential energy
with respect to the particle positions [36]: in the vicinity of
the critical strain γC at which a plastic event takes place, the
minimum eigenvalue λ1 decreases as shear is applied [37].
λ1 finally decays to zero at γC and excites a corresponding
ST, the elementary process of a plastic event. The released
energy from the excited ST propagates throughout the
system via the elastic field and can excite secondary STs,
leading to an avalanche [24]. What if, then, we conduct
similar analyses in systems under finite rate shear? To
tackle this simple question, we employed INM analysis
[18–23]. The INMs are obtained as the eigenmodes of the
dynamical matrix calculated from the instantaneous particle
configurations. Under AQS shear, the INMs are identical to
the standard NMs by definition.
We now present the results of the INM analysis under

finite rate shear. We note that, although the results for
the system with N ¼ 2048 are explained in detail as a
reference, the qualitative behaviors do not depend on the
system sizes. When only one single ST is excited under a
very slow shear (_γ ¼ 2 × 10−5), we observe qualitatively
similar behaviors to those of NMs under AQS shear
(Fig. 2): all eigenvalues are positive in the elastic branch
(where the stress rises), and the minimum eigenvalue λ̃1
decreases drastically in the vicinity of the critical strain γC.
However, unlike the case of systems under AQS shear, the
stress does not start decreasing when λ̃1 becomes zero.
Thus, λ̃1 becomes even negative: the corresponding mode
becomes a so-called imaginary mode. λ̃1 then stops
decreasing at γ ¼ γC, at which the stress starts decreasing.

(a) (b)

FIG. 1. (a) Average steady-state stress hσi as a function of the
shear rate _γ. Different symbols stand for different system sizes as
shown in the legend. Error bars represent the standard deviation
between samples. The dotted line marks σY obtained in (b).
(b) Average steady-state stress under AQS shear σ0ðLÞ at
different system sizes as a function of their standard deviations
δσ0ðLÞ. The dashed line is the linear fit to the data, and the black
square is the estimated intrinsic yield stress σY ≡ σ0ð∞Þ from the
extrapolation of the data.
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Since the system requires nonzero time to dissipate the
released energy from an excited ST, the corresponding
Im-INM survives over a finite strain even beyond γC. These
results suggest that Im-INMs correspond to evolving
excited STs. In fact, as presented below, this speculation
is the case even when multiple Im-INMs are present
simultaneously.
As stated above, STs sometimes form avalanches whose

shapes change drastically as _γ increases. To present the
shear-rate-dependent change in structures of avalanches,
we further plot the stress σ and the number of Im-INMs N†

as functions of the applied strain γ in Fig. 3. When the rate
is low (_γ ¼ 2 × 10−5), peaks of N† are observed in a clearly
synchronized manner with stress drop events [Figs. 3(b)
and 3(c)]. In particular, large stress drop events are
accompanied by multiple Im-INMs. If we visualize the
obtained Im-INMs at a peak, we find that STs correspond-
ing to those modes form a quasilinear avalanche [Fig. 3(a)].
When the shear rate becomes intermediate (_γ ¼ 5 × 10−4),
the amount of strain applied during the average lifetime
of a ST becomes comparable to the typical strain interval
between STs. As a result, successive STs barely overlap
temporally, as indicated by a narrow peak with N† ¼ 2 at
approximately γ¼1.001 [Figs. 3(e) and 3(f)]. Nevertheless,
avalanche events, which are indicated by multiple Im-INMs
and take place less frequently, hardly overlap. The visu-
alization result [Fig. 3(d)] of the event with the largest N† is
a large system-spanning avalanche. When the shear rate
becomes high (_γ ¼ 2 × 10−3), even avalanches start over-
lapping, since a strain large enough to induce secondary
avalanches is applied during the typical lifetime of ava-
lanches. As a consequence, stress drop events and the peaks
of N† become obscured, and we cannot precisely locate
them anymore [Figs. 3(h) and 3(i)]. The typical number of
Im-INMs is notably larger than those under slower shear,
and their visualization is composed of multiple avalanches,
as shown in Fig. 3(g). The temporal overlap of avalanches

(a) (b)

FIG. 2. (a) Macroscopic stress σ and (b) the lowest eigenvalue
λ̃1 as functions of the applied strain γ. Data are drawn from a
system with N ¼ 2048 and _γ ¼ 2 × 10−5. Dashed lines indicate
the range during which a stress drop event is taking place. The
event corresponding to the first peak in Fig. 3(c) is shown.

(a)

(b) (e) (h)

(k)

(l)

(f) (i)(c)

(d) (g) (j)

FIG. 3. (a)(d),(g),(f) Visualization of Im-INMs at configurations indicated by dotted lines in figures beneath. All Im-INMs obtained for
a given configuration are visualized on top of each other. Black arrows depict eigenvectors and only mobile particles (see the
Supplemental Material, SM1 [38] for the precise definition) in each mode are highlighted in red. The copied images due to the periodic
boundary conditions are also shown in lighter colors. (b)(e),(h),(k) The stress σ and (c)(f),(i),(l) the number of Im-INMs N† as functions
of the applied shear γ. Each column presents the results for different shear rates as indicated above the top row. All results are from the
system with N ¼ 2048.
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is the cause of the decrease in the characteristic length of
avalanches ξ and expected for the system with hσi > σY
[32]. We stress that, indeed, hσi > σY holds for _γ ≥ 2 ×
10−3 [Fig. 1(a)]. If we increase the shear rate further
(_γ ¼ 2 × 10−2), both stress drops and peaks of N† becomes
completely obscured [Figs. 3(k) and 3(l)]. We can no longer
decompose the visualized structure into individual ava-
lanches [Fig. 3(j)]. We emphasize that Im-INMs, the vector
fields presented in Fig. 3, are totally different from the
displacement fields, e.g., those in Ref. [13], although they
are superficially similar, especially at low _γ. While the
displacement fields during a specific time duration are
visualized in Ref. [13], our vector field is determined solely
by one instantaneous snapshot. Moreover, Im-INMs teach
much richer information than the displacement fields: the
precise structures of avalanches are manifested even at very
high rates where the displacement fields exhibit only
simple extended structures. In fact, this rich information
allows us to correctly estimate the macroscopic mechanical
property, or the HB exponent, as demonstrated below.
To quantify the complicated shear-rate-dependent struc-

tural changes of avalanches, we measure the average
number of Im-INMs hN†i, which carries information about
the typical number and size of avalanches. We plot the
results as functions of the shear rate _γ in Fig. 4(a). As seen
here, hN†i increases in a power-law manner regardless of
the system size and the shear rate. Furthermore, if we define
the Im-INM density hn†i≡ hN†i=N, the results for differ-
ent system sizes all overlap [Fig. 4(b)]. These results
suggest that hN†i can be expressed as hN†i ∼ N _γλ, where
the exponent is estimated as λ ∼ 0.764 by fitting (all values
of critical exponents are summarized in the Supplemental
Material, SM2 [38]).
Scaling argument.—Now, we present an argument that

reveals the relation between the exponent λ and the
HB exponent n. Above threshold (hσi > σY), there are
multiple avalanches with an average linear size of ξ. By
definition, the number of avalanchesNava in this situation is
described as Nava ¼ ðL=ξÞd [32]. Since avalanches possess

df-dimensional fractal structures, we can estimate the
number of STs per avalanche NST=ava as NST=ava ∼ ξdf .
The expected average number of STs hN†i is then
expressed simply by the product of Nava and NST=ava as

hN†i ¼ Nava × NST=ava ∼ Ldξdf−d ∼ N _γn: ð1Þ

Here, we utilized the relations ν ¼ 1=ðd − dfÞ [32,34],
n ¼ 1=β, and ξ−1=ν ∼ _γ1=β in the last equality. This phe-
nomenological estimation accounts for the linear depend-
ence of N† on the system size N. Furthermore, importantly,
Eq. (1) predicts that the exponent λ should coincide with the
HB exponent n [39].
To further check the reliability of the obtained value of

the HB exponent n ¼ λ ≈ 0.764, we consider the finite size
scaling of the flow curves. The scaling Ansätze simply
imply the scaling relation _γ ∼ L−β=νfðΔσL1=νÞ, where fðxÞ
is a suitable scaling function [32]. As shown in Fig. 5(a),
the results for different system sizes are collapsed very well
with this relation. Furthermore, the curve of the HB law
precisely captures the simulation data meeting Δσ > 0
[Fig. 5(b)]. Note that the exponents n and β meet the
relation n ¼ 1=β. These results mean that the HB exponent
can be accurately estimated by the average number of Im-
INMs; thus, we conclude that these modes serve as the
structural signatures of the HB law.
We stress that mean-field theory [40] predicts the value

of n ¼ 0.5, and several studies have reported consistent
values [4,16,28,41,42]. We show in the Supplemental
Material, SM3 [38] that, if we ignore the finite size effects
and fit to the whole data of a single system size directly as
in previous studies, we also obtain consistent values
n ≈ 0.5.
Summary and overview.—To summarize, we first

showed that Im-INMs provide information about evolving
STs. Then, by investigating the shear-rate-dependent devel-
opment of complicated structures of avalanches, we further
showed that the average number of Im-INMs exhibits a
power-law dependence on the shear rate with the same
exponent as the HB law. These findings were further

(a) (b)

FIG. 5. Distance to the critical point Δσ as a function of the
shear rate _γ with finite size scaling. (a) Semilog plot. (b) Log-log
plot. Different symbols express different system sizes, as shown
in the legend. The dashed line represents the HB law with
parameters estimated in Figs. 1 and 4 and Eq. (1).

(a) (b)

FIG. 4. (a) Average number of Im-INMs hN†i and (b) average
Im-INM density hn†i as functions of the shear rate _γ. Different
symbols are for different system sizes as shown in the legend in
(b). The dashed line in (b) shows the power-law fitting result.
Averages are calculated over 250 randomly chosen independent
configurations.
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validated by the success of scaling collapse of flow curves
with different system sizes. From all these results, we
conclude that Im-INMs are the structural signatures of the
HB rheology of sheared glasses.
It would be very important to investigate whether the

findings in this Letter are applicable to other soft materials
that obey the HB law, such as suspensions or emulsions,
where the jamming criticality also plays a major role.
Investigating the effects of the introduction of thermal
[29,43,44] or various types of active noises [45–47] would
also provide useful knowledge for material design.
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