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The geometry of Hamiltonian’s eigenstates is encoded in the quantum geometric tensor (QGT),
containing both the Berry curvature, central to the description of topological matter, and the quantum
metric. So far, the full QGT has been measured only in Hermitian systems, where the role of the quantum
metric is mostly limited to corrections. On the contrary, in non-Hermitian systems, and, in particular, near
exceptional points, the quantum metric is expected to diverge and to often play a dominant role, for
example, in the enhanced sensing and in wave packet dynamics. In this Letter, we report the first
experimental measurement of the quantum metric in a non-Hermitian system. The specific platform under
study is an organic microcavity with exciton-polariton eigenstates, which demonstrate exceptional points.
We measure the quantum metric’s divergence, and we determine the scaling exponent n ¼ −1.01� 0.08,
which is in agreement with the theoretical description of second-order exceptional points.
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The recent development of experimental techniques and
theoretical understanding has allowed one to measure both
components of the quantum geometric tensor (QGT) [1–3],
which are the Berry curvature and the quantum metric,
experimentally [4,5]. In particular, the use of optical
systems allows one to access the nontrivial geometry of
real photonic bands and to observe the related conse-
quences on wave packet propagation and the anomalous
Hall effect [5]. In Hermitian systems, the quantum metric
determines the nonadiabatic corrections to the anomalous
Hall effect [6–8], with the dominant role played by the
Berry curvature. These measurements have inspired further
research on the quantum metric [3], adding on top of the
previous works that have demonstrated its importance for
superfluidity in flat bands [9,10], the electronic magnetic
susceptibility [6,11], the characterization of general phase
transitions [12,13], or the exciton Lamb shift [14].
At the same time, studies of non-Hermitian systems [15–

18] have also started to deal with the topology of the
exceptional points, which are the branch points of the
multivalued Riemann surface formed by the eigenvalues of
the Hamiltonian of such systems. It was shown that the
chiral dynamics associated with this non-Hermiticity is

extremely promising for applications [19–21], together
with the enhanced sensing properties [22]. Crucially, the
good topological invariant in the vicinity of these points is
not anymore associated with the Berry curvature of the
eigenstates but with the winding number of the so-called
effective field [23,24] (and the associated complex eigen-
values), determined by the Hermitian and non-Hermitian
parts of the Hamiltonian itself. Indeed, because of the non-
Hermitian contribution, the adiabatic description of dynam-
ics based on the Berry curvature becomes irrelevant
[25,26]. On the other hand, the quantum metric should
exhibit a hyperbolic divergence at the exceptional points of
second order (with square root topology) [27,28]. This
divergence has remarkable physical consequences, con-
trolling the dynamics of wave packets centered at excep-
tional points [28]. Here, the quantum metric is not
responsible for small corrections; it has a dominant role,
determining a nonvanishing constant group velocity with a
polarization-dependent direction. However, the quantum
metric of a non-Hermitian system has never been measured
experimentally so far, in spite of the extended studies of
such points in optics [18,29], which date back to Voigt [30],
and of their recent observation in microcavities [31].
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In this work, we study the modes of an organic micro-
cavity [32] exhibiting a polarization-dependent strong
coupling, which provides a pronounced non-Hermitian
response ensuring well-defined exceptional points (EPs).
We measure the Stokes parameters of the eigenmodes in
vicinity of the exceptional points and extract the corre-
sponding quantum metric. We demonstrate that this metric
is diverging, exhibiting a scaling exponent n ¼ −1.01�
0.08. The coefficients of the measured hyperbola corre-
spond to the analytical predictions based on an effective
Hamiltonian.
The sample we study is an organic microcavity with

metallic mirrors, shown in Fig. 1(a) [33]. The active layer is
a microcrystal of an organic molecule, 4,40-bis[4-(di-p-
tolylamino)styrylbiphenyl (DPAVBi), whose structure is
shown in Fig. 1(b). The microbelt width (Y axis) is around
20 μm, with a thickness of 2.0–3.0 μm, and the length
(oriented along X) is several hundreds of micrometers. The
triclinic form of the DPAVBi crystal is determined by the
specific arrangement of molecules. The resulting optical
properties of the crystal are strongly anisotropic, with an
optical axis in the XZ plane (cyan arrow) tilted by 36° [33]
with respect to the Z axis.

We begin by showing the unpolarized reflectivity of
the sample in the two orthogonal directions [Figs. 1(c) and
1(d)]. Angle-resolved spectroscopy was measured using a
halogen lamp with a wavelength range of 400–700 nm. The
light was entered and collected by using the 100× micro-
scope objective with a high aperture (0.95); the collection
angle can achieve �70°. The momentum space of the
reflectivity was located at the back focal plane of the
objective lens. The reflectivity is plotted as a function of
energy and wave vectors kx and ky. We focus on two
particular eigenmodes, which exhibit the clearest behavior.
First of all, we note that the two branches show very
different effective masses and very different linewidths.
This is due to the strongly polarized nature of excitons in
DPAVBi (see [33,34] on the anisotropy of the excitonic
absorption by the microbelt). The exciton (EX ∼ 2.7 eV)
strongly couples with the photonic modes only in the H
polarization (electric field aligned along X) exhibiting a
Rabi splitting of 80 meV. The V-polarized modes (electric
field aligned along Y) remain unaffected by the excitonic
resonance. The strongly coupled modes exhibit a higher
mass and a smaller linewidth, both because of their reduced
photonic fraction.
In the two k-space directions, the behavior of the two

modes is qualitatively different: A crossing of the weakly
and strongly coupled polarization branches occurs along
the kx direction and an anticrossing along ky. This anti-
crossing is not the result of the above-mentioned strong
exciton-photon coupling. It is rather due to the emergent
optical activity of the structure, which becomes sufficiently
large at the anticrossing wave vector. Optical activity has
recently been shown to emerge at the macroscopic level in
cavity structures, when the linear birefringence is so high
that oppositely polarized modes of opposite parity become
degenerate [35,36]. It is therefore a coupling which occurs
between the photonic part of such modes. This is illustrated
in Supplemental Fig. S2 [34], showing (with a thicker
sample) that the anticrossing appears only for opposite
parity branches. The direction of the optical activity is
determined by the tilt of the optical axis [35]: it emerges in
the direction Y, perpendicular to the plane XZ containing
the optical axis of the crystal.
The two closest branches can be described by a 2 × 2

effective non-Hermitian Hamiltonian describing two
polarization subbands with two different effective masses
stemming from a different coupling with the exciton. The
eigenvectors of this two-band Hamiltonian are mapped to
the Stokes vector of light. The non-Hermitian contribution
has to be included because of the difference of the line-
widths. This effective Hamiltonian written in the linear
polarization basis reads (more details on its derivation are
given in Ref. [34])

FIG. 1. Reflectivity of the organic microcavity. (a) Scheme of
the microcavity sample. (b) Structure of the DPAVBi molecule.
(c),(d) Reflectivity as a function of wave vector kx and ky
(respectively) and energy, exhibiting anticrossing along ky.
(e) Reflectivity as a function of the in-plane polar angle ϕ and
energy E for jkj ¼ jk�j (EP wave vector). (f) Real and imaginary
parts of the mode energies (dots with error bars, experiment;
lines, theory).
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H0 ¼
�
β0 þ ðξ − βÞðk2x þ k2yÞ − iΓ − iΓ0 χky

χky −β0 þ ðξþ βÞðk2x þ k2yÞ þ iΓ − iΓ0

�
: ð1Þ

This Hamiltonian describes two linearly (H and V)
polarized modes. They have different effective masses
(the �βk2 term): V is a purely photonic mode with a mass
mV , while H is strongly coupled with excitons and, thus,
has a larger effective mass mH > mV [34]. Because of the
same reason, they also exhibit different linewidths: The
strongly coupled H mode is narrower (the �iΓ term).
Finally, these two linearly polarized modes are coupled by
the optical activity term χky acting only along the Y axis. β0
represents the splitting of the two modes at k ¼ 0, ξ ¼
ℏ2=2m� withm� ¼ ½2mHmV=ðmH þmVÞ�, χ represents the
emergent optical activity, Γ is the half-difference of the
broadenings of the modes, and Γ0 is the half-average of the
broadenings. Finally, β is the difference of the effective
masses of the two modes, which comes from the fact that
one mode is coupled with the exciton, while there is no
coupling for the other mode. The theoretical dispersions
calculated with the Hamiltonian (1) are shown in Figs. 1(c)
and 1(d) with dashed lines. The best fit is obtained
with the following parameters: β0 ¼ 130� 9 meV,
Γ ¼ 11� 4 meV, β ¼ ð1.00� 0.07Þ meV=μm−2, m�¼
ð2.0�0.1Þ×10−5me, and χ ¼ 1.8� 0.6 meV=μm−1.
The Hamiltonian is symmetric versus kx and antisym-

metric versus ky. Since the branches are crossing along kx
and anticrossing along ky, there are necessarily four points
at which the transition between the crossing and the
anticrossing occurs. These are the famous exceptional
points characteristic for non-Hermitian systems. The plot
of experimentally measured reflectivity spectra along a
circle of constant jkj passing through one of the exceptional
points is shown in Fig. 1(e). The extracted mode energies
and linewidths are shown in Fig. 1(f) with points, and the
corresponding real and imaginary parts of the theoretical
eigenenergies appear as solid lines. The extraction is
performed by fitting the reflectivity spectra with
Lorentzians (see [34], Fig. S4). In systems with perfectly
balanced gain and losses, the exceptional points correspond
to the transition between the PT-symmetric regime with
real eigenvalues and the PT-broken regime with imaginary
eigenvalues [37]. The same transition is still present in our
case, in spite of the overall decay Γ0, and the observed
behavior of the modes confirms the presence of a second-
order exceptional point at k�.
The eigenvalues do not tell everything about physical

systems: The corresponding eigenstates are also important.
While the famous Berry curvature and its integral, the
Chern number, seem to be less relevant for non-Hermitian
systems in the vicinity of exceptional points due to the
essentially nonadiabatic behavior [25,26], other quantities

linked with the eigenstates, such as the quantum metric,
play a key role in the wave packet (beam) dynamics [28].
The measurement of the Stokes vector for each eigenstate
in reciprocal space [5,7] allows one to extract the quantum
metric using the definition of the quantum geometric tensor
(whose real part is the quantum metric, and the imaginary
part is the Berry curvature):

gij ¼ Re½h∇ψ j∇ψi − hψ j∇ψih∇ψ jψi�; ð2Þ

where jψi is the eigenstate written as a spinor (similar to the
Jones vector, but on the circular basis) as follows:

jψi ¼
���� cos

θ
2
e−iϕ

sin θ
2

�
ð3Þ

and the angles θ ¼ arccos S3 and ϕ ¼ arctanS2=S1 char-
acterize the orientation of the Stokes vector. We note that
the gradient is taken in the parameter space (the reciprocal
space). We now focus on a quarter of the reciprocal space
containing a single exceptional point and extract the Stokes
vectors of the modes from polarization-resolved reflectivity
measurements. In order to investigate the polarization
properties, we placed a linear polarizer, a half-wave plate,
and a quarter-wave plate in front of the spectrometer slit to
obtain the polarization state of each pixel in the k-space,
horizontal-vertical (0° and 90°), diagonal (�45°), and
circular (σþ and σ−) basis. An energy spectrum is obtained
in each of the six polarizations (H, V, D, A, L, and R) for
each point of the reciprocal space. We use a Lorentzian fit
in order to get the positions, the relative intensities I, and
the widths of the two modes, which permits the extraction
of a 2D reciprocal space map of the Stokes vector
components S1, S2, and S3 of the lower branch, shown
in Figs. 2(a)–2(c). The validity of the effective 2 × 2
Hamiltonian (1) is confirmed by the good fit of the
dispersions in Figs. 1(c) and 1(d) and by the agreement
between the experimentally extracted components of the
Stokes vector [Figs. 2(a)–2(c)] and the theoretically calcu-
lated ones [Figs. 2(d)–2(f)]. The EP located at k�x ¼
4.01 μm−1 and k�y ¼ 6.12 μm−1 is shown by a white star.
The two components S1 and S3 cancel at this point, while
S2 exhibits a maximum (similar to the circular polarization
observed at the Voigt points).
Once the Stokes vectors are known, one can extract the

quantum metric elements using Eq. (2), as described in
detail in Ref. [7]. The results of this extraction are shown as
a 2D plot of the trace of the quantum metric gxx þ gyy in
Fig. 3(a). The uncertainty of the extracted points is of the
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order of 10% [5]. The part of the reciprocal space
corresponding to the branch cut of the Riemann surface
formed by the eigenstates is covered by a gray rectangle.
The rectangular shape of the remaining regions facilitates
their numerical treatment. A clear maximum is visible in
the vicinity of the EP. The global behavior of the metric is
in a good agreement with theoretical predictions based on
the eigenstates of the Hamiltonian (1) [Fig. 3(b)].
The quantum metric is known to diverge hyperbolically

at the exceptional points of the second order (with two
crossing branches) [27,28], and an explicit expression for
the metric in the vicinity of the exceptional point can be
written as

gqq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1

2cos2ϕ0 þ α2
2sin2ϕ0p

8Γq
þ α1

2cos2ϕ0 þ α2
2sin2ϕ0

16Γ2

ð4Þ
where q is the wave vector measured from the exceptional
point and α1;2 [orientation shown by white arrows in
Fig. 3(b)] are proportional to the difference of the group
velocities at the crossing point (the celerity of the effective
Dirac Hamiltonian; see [34] for details). Experimentally,
the values of the quantum metric are obtained only for a
finite number of pixels in the reciprocal space, which can be
close to the exceptional point but never fall on it exactly. In
order to demonstrate the hyperbolic divergence, we choose
a particular direction in the reciprocal space, where the
experimental resolution is the highest (ky), and plot in
Fig. 3(c) the quantum metric in log-log scale for several
experimental points (red dots) closest to the exceptional
point as a function of q ¼ jky − k�yj (using q0 ¼ 1 μm−1

and g0 ¼ 1 μm2 as characteristic scales). A fit with a power
law gqq ∼ qn (black line) allows one to determine the
scaling of the quantum metric n ¼ −1.01� 0.08. The
divergent behavior is best visible in comparison with

another region, which exhibits a finite maximum [black
points in Fig. 3(c)] appearing as a horizontal asymptotic in
log-log scale. Both regions are shown in Fig. 3(a) as white
lines. We can, therefore, conclude that we have observed
the hyperbolic divergence of the quantum metric of a
second-order exceptional point experimentally.
The agreement between the experiment and the theory

can be checked further, by extracting the second (constant)
term from the trace of the quantum metric and comparing it
with the parameters of the effective Hamiltonian (1) obta-
ined from the dispersions shown in Figs. 1(c) and 1(d). For
this, we fit the experimentally extracted values of the
quantum metric with a function fðqÞ corresponding to
the reduced expression (4) of the quantum metric
tensor gqq:

f ¼ η

q
þ 4η2: ð5Þ

The fit of the metric gives η ¼ 0.173� 0.004 μm. On the
other hand, η ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 þ α22

p
=8

ffiffiffi
2

p
Γ. We take the parameters

of the Hamiltonian extracted from the fit of the exper-
imental dispersion in Fig. 1: Γ ¼ 11� 0.4 meV and the
celerity parameter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 þ α22

p
=

ffiffiffi
2

p ¼ 14� 2 meV=μm−1,
which gives ηexp ¼ 0.16� 0.06 μm. This agreement vali-
dates both the metric extraction procedure and the theo-
retical analysis of the Hamiltonian and its eigenstates.

FIG. 3. Quantum metric of an exceptional point. 2D maps of the
trace of the quantum metric in the vicinity of an EP marked as a
star: (a) experiment; (b) theory. The gray region covers the
discontinuity of the wave function (branch cut). (c) A log-log plot
of the experimentally extracted quantum metric gqq near kx ¼ 0
(black dots) and near the EP (red dots) and its fit (red line), giving
the scaling exponent n ¼ −1.01� 0.08. The metric is extracted
along the white dashed lines shown in (a).

FIG. 2. Stokes vector components of the lowest-energy eigen-
states (experiment and theory). (a)–(c) Experiment (S1, S2, S3);
(d)–(f) theory (S1, S2, S3). A region where the pseudospin could
not be extracted experimentally is hatched.
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Our results demonstrate the advantages of the optical
systems for the studies of advanced quantum-mechanical
effects, such as the properties of exceptional points in non-
Hermitian systems. We have managed not only to extract
the real and imaginary parts of the eigenenergies, which
determine the topology of the exceptional point, but also to
study the eigenstates and their variation with parameters.
The main property of exceptional points is the divergence
of the characteristic derivatives in their vicinity. This
divergence is responsible for enhanced sensing properties
of these points. While it is very well known that the
derivative of the real part of the energy diverges as q−1=2,
the hyperbolic q−1 divergence of the eigenstates measured
by the quantum metric is much less known. Yet, it
determines the overlap integrals and, therefore, the pos-
sibilities to excite and to measure the states in the vicinity of
exceptional points and, ultimately, to benefit from the
enhanced sensing.
The possibilities of extraction of the eigenstates and their

metric are determined by the experimental resolution in the
reciprocal space. In our case, we had to use the axis with the
smallest experimental step in order to get sufficiently close
to the exceptional point and to be able to evidence the
particular power law of the divergence. The observation of
this power law on a larger scale would require smaller steps
and higher stability of the experimental platform, in order
to avoid the broadening in the k space. Disorder-induced
mixing of the wave vectors also restrains the possibilities of
approaching the exceptional point. The same considera-
tions apply to enhanced sensing: Enhancement applies not
only to the useful signal, but also to the noise [38], which,
therefore, must be reduced as much as possible.
In conclusion, we have studied exceptional points in an

organic microcavity. We have extracted the Stokes vectors
of the eigenstates in the vicinity of the exceptional point
and then calculated the quantum metric tensor. Our
measurements confirm that the quantum metric of a
second-order exceptional point exhibits a hyperbolic diver-
gence. This is expected to affect the dynamics of wave
packet (the trajectories of optical beams) at exceptional
points.
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