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Triaxial weaving is a handicraft technique that has long been used to create curved structures using
initially straight and flat ribbons. Weavers typically introduce discrete topological defects to produce
nonzero Gaussian curvature, albeit with faceted surfaces. We demonstrate that, by tuning the in-plane
curvature of the ribbons, the integrated Gaussian curvature of the weave can be varied continuously, which
is not feasible using traditional techniques. Further, we reveal that the shape of the physical unit cells is
dictated solely by the in-plane geometry of the ribbons, not elasticity. Finally, we leverage the geometry-
driven nature of triaxial weaving to design a set of ribbon profiles to weave smooth spherical, ellipsoidal,
and toroidal structures.
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Traditional basketmakers have long been employing the
handicraft technique of triaxial weaving to fabricate intri-
cate shell-like structures by interweaving initially straight
ribbons into tridirectional arrays [1,2]. Beyond basketry,
triaxial weaving is also encountered in textiles [3],
composite materials [4], molecular chemistry [5,6], and
biology [7]. While weaving with straight ribbons in a
regular hexagonal pattern yields a flat surface, topological
defects (e.g., pentagons or heptagons) induce local out-of-
plane geometry [1,8–10]. Basketmakers have extensive
empirical know-how on how and where to place these
defects, and recent research has investigated their optimal
placements to approximate target surfaces [2,11]. The
strategy to achieve shape by defects is also akin to the
concept of topological charge [12] in curved two-dimen-
sional (2D) crystals such as the buckminsterfullerene [13],
colloidal crystals [14–16], confined elastic membranes
[17,18], and dimples on curved elastic bilayers [19,20].
However, the curvature attained from these defects is
discrete, which limits the range of realizable shapes.
Even if previous studies [21,22] have suggested a poly-
gon-based combinatorial design procedure that includes
weaving with initially curved ribbons, a predictive under-
standing of the effect of the ribbon geometry on the shape
of the weave is lacking.
Here, we investigate how triaxial weaving with naturally

curved (in-plane) ribbons can yield smooth three-
dimensional (3D) shapes. We make use of a combination
of rapid prototyping, x-ray microcomputed tomography
(μCT), and finite element methods (FEMs) to perform a
detailed characterization of the geometry of our woven
structures. First, we take a unit-cell approach to

systematically explore how the original 2D geometry of
the ribbons dictates the 3D shape of the weaves and regard
these cells as building blocks to construct more complex
woven objects. Figure 1 and the associated video in the
Supplemental Material [23] show representative unit cells
with different topological characteristics and with ribbons
with different in-plane curvatures. Excellent agreement is
found between the experiments (μCT) and simulations
(FEM). These unit cells comprise n identical ribbons that
are woven to form an n-gon surrounded by a total of n
triangles. Each ribbon has three segments (indexed by

FIG. 1. Representative family of triaxially woven unit cells
for different numbers of ribbons (rows, n ¼ f5; 6; 7g) and for
different values of the in-plane curvature in their middle
segment (columns, k2¼f−0.033;−0.013;0;0.013;0.033gmm−1).
All ribbons have three segments, each of arc length
l1 ¼ l2 ¼ l3 ¼ 15 mm; only the middle one is curved
(k2 ≠ 0 mm−1), while those in the two extremities are naturally
flat (k1 ¼ k3 ¼ 0 mm−1). Tomographic μCT scans (gray images)
are juxtaposed on FEM simulations, color coded by the distance
between their respective centerlines locations e=l. See the
associated video in the Supplemental Material [23].
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j ¼ f1; 2; 3g), with rivets placed at the crossing points to
fix the segment length lj. The in-plane curvature kj of each
segment can be varied continuously (see red solid lines in
Fig. 1). Traditional weaving corresponds to the case of
straight ribbons, kj ¼ 0 mm−1 (Fig. 1, middle column). By
considering ribbons that are naturally curved in plane
(examples in Fig. 1 with k2 ≠ 0), we demonstrated that
the curvature of the resulting surface of the unit cells can be
tuned smoothly, in a way not possible through the tradi-
tional approach. A purely geometric analysis is performed
to rationalize the integrated Gaussian curvature of the
physical unit cells, revealing that geometry is at the core
of setting the shape of our physical triaxial weaves. This
geometric reasoning forms the basis of a set of design
principles, which are then leveraged to construct a variety
of smooth canonical structures, including spherical, ellip-
soidal, and toroidal weaves.
Before turning to the general case of curved ribbons, we

first focus on the “traditional weaving” of unit cells with
naturally straight ribbons (k∘1 ¼ k∘2 ¼ k∘3 ¼ 0); hereon, the
superscript ð·Þ∘ denotes quantities pertaining to straight
ribbons. In Fig. 2(a), we present the photograph of a
physical unit cell for a representative case with n ¼ 5
ribbons. The specimens were fabricated by, first, laser
cutting ribbons of width 4 mm from a polymer sheet and,
then, hand weaving them to produce a 3D structure, which
was imaged tomographically using a μCT scanner
(μCT100, Scanco Medical; a ¼ 29.3 μm voxel size).
The original polymer sheet was a bilayer of a polyethylene
terephthalate (PETE; Young’s modulus E1 ≈ 3 GPa) plate

of thickness t1 ¼ 0.25 mm, coated with an elastomer-metal
composite (E2 ≈ 1 MPa) of thickness t2 ¼ 0.35 mm. The
latter comprised vinylpolysiloxane (VPS-16, Zhermack)
infused with a metal powder (NdFeB, 30065-089, neo
Magnequench; ≈5 μm particle size) mixed at 2–1 weight
ratio. Given the disparity in bending stiffnesses of the two
layers, E1ðt1Þ3=½E2ðt2Þ3� ≈Oð103Þ, the mechanical stiff-
ness of the ribbons was provided by the PETE, with a
width-to-thickness ratio of 16. The radiopacity of the
elastomer-metal served in detecting the ribbons using
x-ray tomography to extract their framed centerlines from
the volumetric data ([23], Sec. 1) [Fig. 2(b)]. The corre-
sponding framed centerlines extracted from FEMs (see
[23], Sec. 2.1 for procedure) are in excellent agreement
with the experiments, as demonstrated in Fig. 2(c).
We characterize the shape of the unit cells by quantifying

their curvature. However, since the n-gon in the woven unit
cell does not possess a well-defined surface (its inner region
is void of material), it is impossible to define a pointwise
Gaussian curvature K. However, the n-gon does have a
well-defined boundary, set by the ribbons centerlines. We
define the integrated Gauss curvature of the unit cell,
Kn ¼

R
A KdA, where A is a surface enclosed by and

tangent to the centerlines of the n-gon [for example, the
shaded region in Fig. 2(b)]. The remarkable Gauss-Bonnet
theorem [26] states that Kn is independent of the embed-
ding of the surface A, and it can be determined directly by
quantifying the n-gon boundary

Kn ¼ ð2 − nÞπ −
Xn

i¼1

κig þ
Xn

i¼1

θi; ð1Þ

where κig ¼
R
i kgds is the integrated geodesic curvature of

the ith edge and θi is the ith interior angle of the n-gon at
each crossings [see schematic definitions in Fig. 2(b)]. Kn
is the key quantity that we investigate throughout this study.
Toward evaluating Kn, as presented in Fig. 2(d), we first
measured experimental and simulated averages of both the
integrated geodesic curvature hκ∘gi ¼ 1=n

P
n
i¼1 κ

i
g and the

interior angles hθ∘i ¼ 1=n
P

n
i¼1 θ

i for representative unit
cells with 3 ≤ n ≤ 9. Within the same cell, we find that all
ribbons share the same values of κig and θi (their standard
deviation is smaller than the symbol size), as expected from
rotational symmetry. In the region n ≥ 5, hθ∘i ≈ 2π=3
independent of n, indicating that the exterior triangles
remain developable and the Gaussian curvature concen-
trates at the n-gon ([23], Sec. 2.2). To rationalize this
observation, we use geometrical arguments based on either
a spherical or a conical underlying geometry to estimate the
bending energy of the unit cells ([23], Sec. 2.3), showing
that it is a decreasing function of n. Therefore, it
is energetically more favorable to bend an n-gon with
n > 3 than the external triangles, which can be regarded as
nearly developable. However, our current understanding
does not draw a full picture of the intricate coupling
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FIG. 2. Unit cells woven with straight ribbons. (a) Photograph
of a unit cell with n ¼ 5 straight ribbons. (b) Experimental data of
the framed centerlines of the cell in (a) extracted from μCT ([23],
Secs. 1.1–3). (c) FEM-computed version of (b). (d) Average
interior angles of the n-gon hθ∘i and average integrated geodesic
curvatures hκ∘gi vs n. The horizontal dashed lines at hθ∘i ¼ 2π=3
and hκ∘gi ¼ 0 are drawn to aid visual comparison with the
geometric prediction. (e) Integrated Gaussian curvature of the
unit cells with straight ribbons K∘

n, computed through Eq. (1), vs
q∘ ¼ 6 − n. The solid line is the prediction from Eq. (2).
Inset: FEM-computed unit cells with q∘ ¼ f−3;−2;…; 3g, or
equivalently n ¼ f9; 8;…; 3g.
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between elasticity and geometry in these woven structures,
whose structural rigidity remains an open problem.
Moreover, the vanishing integrated geodesic curvature
hκ∘gi ≈ 0 is a direct consequence of the mechanics of elastic
ribbons; ribbons favor out-of-plane (instead of in-plane)
deformation [27]. Combining these observations with
Eq. (1), we arrive at the expression for the integrated
Gauss curvature of a unit cell with straight ribbons,

K∘
n ¼

π

3
ð6 − nÞ; ð2Þ

where the integer q∘ ¼ 6 − n is analogous to the topologi-
cal charge in curved crystallography [12]. From the
measurements on the n-gon boundary presented in
Fig. 2(d), we compute K∘

n as a function of q∘, as shown
in Fig. 2(e), onto which we superpose the predictions from
Eq. (2) and FEM computations for unit cells with
q∘ ¼ f−3;−2;…; 3g, corresponding to n ¼ f9; 8;…; 3g.
Despite some discrepancies for n ≤ 4, Eq. (2) describes
both the experimental and FEM results well. Equation (2)
demonstrates that the discrete nature of q∘ constrains
strongly the possible shapes of the unit cells in traditional
weaving [1,2].
Next, we come back to the nontraditional case of

weaving unit cells with naturally curved ribbons, repre-
sentative examples of which were presented in Fig. 1. In
Fig. 3(a), we show schematic diagrams of an individual
curved ribbon (top), as well as the planar representation of
the corresponding unit cell (bottom). Note that, although
the schematic is drawn planar in Fig. 3(a), the woven unit
cells are, in general, nonplanar. Each segment with j ¼
f1; 2; 3g is color coded as red, green, and blue, respectively.
We seek to evaluate the effect of the initial in-plane
curvature kj on the integrated curvature of the cell Kn as
a function of n. For convenience, we normalize the segment
curvature by its arc length: κj ¼ kjlj. The ð2π=nÞ-fold
rotational symmetry is ensured naturally by the definition
of the unit cell when n is even and enforced when n is odd
by further imposing l1 ¼ l3 and κ1 ¼ κ3. This dense
sampling is sufficient to quantify the effect of the in-plane
geometry of the ribbons. Motivated by our findings for unit
cells with straight ribbons [Fig. 2(d)], we make the
following remarks. First, we assume that the ribbons keep
their in-plane curvature when woven; hence, κjg ¼R
j kgds ¼

R
j kjds ¼ kjlj ¼ κj for every segment of the

n-gon [27]. Second, for straight ribbons, we found that the
outer triangles remained isometric, thereby enclosing a
surface of vanishing integrated curvature; a statement that
we now assume to remain valid for unit cells woven with
curved ribbons. Leveraging this assumption on the outer
triangles, we evaluate the interior angles of the triangles
[opposite to the arc lj; see Fig. 3(a)] using Euclidean
trigonometry: ϕj ¼ cos−1ðPm≠jðg2m − g2jÞ=2

Q
m≠j gkÞ−P

m≠j κm=2, where gj ¼ 2 sinðκj=2Þ · lj=κj. In turn, the
interior angles of the n-gon θi are the supplementary angle

of either ϕ1 or ϕ3, such that
P

n
i¼1 θ

i ¼ fnðπ − ϕ1Þþ
nðπ − ϕ3Þg=2. Thus, using the Gauss-Bonnet
theorem stated in Eq. (1), the integrated curvature
of a unit cell reads Kn ¼ π=3½6 − nðf þ κ�Þ�, where
f ¼ 3=2πcos−1ðg22 − g21 − g23=2g1g3Þ, and

κ� ¼ 3

4π
ð−κ1 þ 2κ2 − κ3Þ: ð3Þ

The arc length lj and the curvature κj are coupled through
the nonlinear term f. Noting that gj ≈ lj in the range of in-
plane curvatures considered, jκjj ≤ 0.5 [e.g.,
gjðκj ¼ 0.5Þ ≈ 0.99lj], we take the asymptotic limit of
jκjj ≪ 1. We further impose l1 ¼ l2 ¼ l3 to quantify only
the effect of the in-plane curvatures. Ultimately, we obtain
f ¼ 1 and Gauss-Bonnet reduces to

Knðκ1; κ2; κ3Þ ¼
π

3
½6 − nð1þ κ�Þ�: ð4Þ

From the similitude between Eqs. (4) and (2), we define
q� ¼ 6 − nð1þ κ�Þ as the “modified topological charge” of
the unit cell with curved ribbons. We highlight that q� can
be varied smoothly using curved ribbons, yielding a
continuous range ofKn, whereasK∘

n in Eq. (2) was discrete
and restricted to multiples of π=3.
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FIG. 3. Weaving with curved ribbons. (a) Schematics of the
ribbons (top) and the planar representation of a typical unit cell.
The ribbons have three distinct curved segments of arc length lj
and normalized curvature κj (j ¼ 1, 2, 3; color coded as red,
green, and blue, respectively). (b) Integrated Gaussian curvature
of the unit cells vs q� ¼ 6 − nð1þ κ�Þ, with κ� from Eq. (3).
Inset: unit cells with n ¼ 6, κ1 ¼ κ3 ¼ 0, and from left to right
κ2 ¼ f0.5; 0.2; 0;−0.2;−0.5g. (c1),(c2) Photographs of spherical
weaves with (c1) straight and (c2) curved ribbons. The weaves
consist of 12 pentagonal (blue shaded region) and 20 hexagonal
(orange shaded region) unit cells. (d1),(d2) Reconstructed μCT
images of the weaves in (c1) and (c2), respectively. The color bar
indicates the normalized voxelwise radial deviation δ=R from a
sphere of radius R ¼ 42 mm.
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In Fig. 3(b), we plot experimental and FEM data for Kn
vs q�, while fixing lj ¼ 15 mm, to systematically explore
the parameter space n ¼ f5; 6; 7g and κ2 ¼ f−0.5;…; 0.5g
(in steps of 0.1). Also, the experiments had κ1 ¼ κ3 ¼ 0
(total of 33 configurations, with two experiments per
configuration) and the simulations had κ1 ¼ �κ3 ¼
f−0.5;−0.2; 0; 0.2; 0.5g (total of 352 configurations). To
convey the change of shape associated with variations of
the integrated curvature, we also juxtapose the unit cells
with n ¼ 6 and varying ribbon curvatures that we presented
in Fig. 1. As above for the unit cells with straight ribbons,
we measured θi and κig of the n-gon and used Eq. (1) to
compute Kn ([23], Sec. 1.3). Remarkably, we find that the
data in Fig. 3 collapse over the full range of −π ≤ Kn ≤ π.
This continuous variation for curved ribbons is in contrast
to the analogous result for traditional weaving [Fig. 2(e)],
whereK∘

n was limited to discrete steps of π=3 [cf. Fig. 2(e)].
Importantly, our geometric prediction forKn from Eq. (4) is
in excellent agreement with the data, demonstrating that in-
plane ribbon geometry is at the heart of our triaxial weaving
problem.
Thus far, we followed a unit-cell approach to demon-

strate that smooth weaving can be physically realized with
curved ribbons, purely from geometric design principles.
We now seek to assemble these unit cells into a spherical
weave, adopting the topology of the “rectified truncated
icosahedron” [28,29] for the layout of our design. We fix
the segment length to ls ¼ 15 mm and inject a (nondimen-
sional) segment curvature κs ¼ ksls into the pentagonal
cells. The resulting weave comprises 12 pentagonal cells
with ðκ1; κ2; κ3Þ ¼ ð0; κs; 0Þ and 20 hexagonal cells with
ðκ1; κ2; κ3Þ ¼ ðκs; 0; 0Þ, marked with blue and orange
shaded regions in Fig. 3(c1), respectively. In Figs. 3(c1)
and 3(c2), we present photographs of two spherical weaves:
one with straight ribbons (κs ¼ 0), the traditional case, and
the other with curved ribbons (κs ¼ 0.3). The correspond-
ing μCT images are shown in Figs. 3(d1) and 3(d2), color
coded by the radial distance between the scans and a sphere
of radius R ¼ 42 mm, δðmmÞ. Negative values of δ
indicate voxels located inside the targeted sphere. For
the weave with straight ribbons [Fig. 3(d1)], the pentagons

protrude from the reference sphere, with 5% maximum
radial deviation. This faceted geometry is a signature of the
localized curvature intrinsic to the discrete nature of
traditional weaving; Eq. (4) predicts K5 ¼ π=3 for the
pentagons and K6 ¼ 0 for the hexagons. By contrast, the
weave with curved ribbons (κs ¼ 0.3) shown in Fig. 3(d2)
exhibits a significantly smoother shape, with a radial
deviation within 1% of the perfect sphere; Eq. (4) predicts
K5 ¼ 0.3 and K6 ¼ 0.45.
Our unit cells with curved ribbons are rotationally

symmetric. Hence, the possible design space available
by their tessellation is limited to shapes with local
symmetry [e.g., the sphere in Fig. 3(c)]. We do not expect
this approach to be, in general, viable to design weaves
with more complex or arbitrary geometries. To overcome
this limitation, we expanded our framework to design the
initial shape of piecewise-circular ribbons that are to be
woven into a given target surface. Similar to what we did
for the unit cells, the injection of geodesic curvature into
the weave through the in-plane curvature of the ribbons is
at the core of the procedure. Our design protocol (detailed
in [23], Sec. 3.1) consists of inputting a target surface,
onto which we project a graph representing the triaxial
weave topology. This graph contains “nodes” (corre-
sponding to the crossing points of the ribbons) and
“edges” for their connectivity. At each node, a geodesic
turning angle between consecutive nodes is computed
with respect to the target surface. The shape of piecewise-
circular segments of the ribbon is then obtained by
averaging the two geodesic turning angles from its
neighboring crossing points.
In Figs. 4(a1)–4(a3), as the first example of nonspherical

designs, we present reconstructed images of ellipsoidal
weaves of an equatorial radius b ¼ 40 mm and polar radii
a ¼ f30; 50; 60gðmmÞ. The graph for these weaves was
obtained by adopting the topology of the rectified truncated
icosahedron [28,29] and linearly expanding it by a factor a
along the x, y axes and a factor b along the z axis ([23],
Sec. 3.2). Photogrammetry was used to reconstruct the 3D
shape of the ellipsoidal woven structures from a series of
photos with different perspectives ([23], Sec. 1.4). The

(b)(a2)(a1) (a3)

10 mm

20 mm

250 50

Norm. error, 

FIG. 4. Nonspherical weaves with initially curved ribbons, reconstructed by photogrammetry. The color bar indicates the normalized
deviation from a target surface e=w, where w is the ribbon width. (a1)–(a3) Ellipsoidal weaves of aspect ratios, a=b ¼ f0.75; 1.25; 1.5g,
respectively. (b) Toroidal weave of inner radius ri ¼ 35 mm and outer radius ro ¼ 105 mm. The planar geometries of the underlying
curved ribbons for each of these weaves are provided in the Supplemental Material ([23], Secs. 3.2–3.3)
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reconstructed meshes are color coded with errors from their
target surface normalized by their ribbon width,
w ¼ 4 mm. Even though our design strategy did not
incorporate the elastic energy of the ribbons, excellent
agreement is found between the target surfaces and the
weaves, exhibiting the distance error smaller than 50% of
the ribbon width. In an ellipsoid, only the meridians and the
equator are the closed geodesics [26], it is not trivial to
achieve smooth oblate [Fig. 4(a1)] and prolate [Figs. 4(a2)
and 4(a3)] ellipsoidal weaves. Curved ribbons enable one
to accommodate variations of the aspect ratio of the
ellipsoids, while keeping the same weave topology. As a
second example, a smooth torus (genus-zero surface with
zero total curvature [26]) cannot be achieved through
traditional weaving; using straight ribbons inevitably
requires the placement of pentagonal and hexagonal
defects, albeit with a localization of curvature that leads
to faceted geometry. By contrast, as demonstrated by the
physical realization in Fig. 4(b), our design with curved
ribbons yields a toroidal weave with hexagonal cells alone,
the in-plane curvature of the ribbons distributing the
total curvature. The presented smooth toroidal weave
has an inner radius ri ¼ 35 mm and an outer radius
ro ¼ 105 mm. The topology of the toroidal weave was
obtained by mapping a regular triaxial pattern in a 2D
parameter space to a 3D toroidal target surface
([23], Sec. 3.3).
The planar layout of the curved ribbons used in the above

designs (spherical, ellipsoidal, and toroidal) are provided in
the Supplemental Material [23] and can be cut and woven
by the interested reader.
Our Letter demonstrates that the discrete nature of

traditional triaxial weaving can be circumvented by using
initially curved piecewise-circular ribbons. The shape of
the weaves can be decoupled from their topology, with
multiple topological layouts and ribbons geometries lead-
ing to the same woven shapes. However, when woven,
these geometrically identical solutions store elastic energy
differently [[23], S2.1]. This observation calls for a full
optimization problem, which we hope future work will
address, where both the distance from the target surface and
the associated elastic energy are minimized in tandem by
changing the geodesic curvatures and the segment lengths
of the ribbon as design parameters. Beyond art and
architecture, future implementations of our design frame-
work may include morphing structures in which the in-
plane curvature of ribbons would be preprogrammed into
the ribbons and actuated upon stimuli to attain desired
target shapes.

We thank Yingying Ren, Julian Panetta, Florin Isvoranu,
Christopher Brandt, and Mark Pauly for fruitful
discussions.

Note added in the proof.—After submission of our manu-
script, the following study [30] on weaving of arbitrary

geometries has been published, using the mechanism
uncovered in the present study at the core of their design
principle.
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