
Transverse Instability of Rogue Waves

Mark J. Ablowitz 1 and Justin T. Cole 2

1Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA
2Department of Mathematics, University of Colorado, Colorado Springs, Colorado 80918, USA

(Received 1 May 2021; accepted 26 July 2021; published 3 September 2021)

Rogue waves are abnormally large waves which appear unexpectedly and have attracted considerable
attention, particularly in recent years. The one space, one time (1þ 1) nonlinear Schrödinger equation is
often used to model rogue waves; it is an envelope description of plane waves and admits the so-called
Pergerine and Kuznetov-Ma soliton solutions. However, in deep water waves and certain electromagnetic
systems where there are two significant transverse dimensions, the 2þ 1 hyperbolic nonlinear Schrödinger
equation is the appropriate wave envelope description. Here we show that these rogue wave solutions suffer
from strong transverse instability at long and short frequencies. Moreover, the stability of the Peregrine
soliton is found to coincide with that of the background plane wave. These results indicate that, when
applicable, transverse dimensions must be taken into account when investigating rogue wave pheneomena.
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In recent years researchers have studied a class of large
amplitude waves that were previously relegated to folklore:
giant water waves appearing out of nowhere causing
extreme damage to, and even loss of, maritime vessels.
The first verified measurement of an extreme water wave
was Jan 1, 1995, on theDraupner platform in the North Sea
where a 25.6 m (84 ft) wave was observed [1]—much
larger than the background wave field. Subsequently, rogue
wave events have been observed in several laboratory
settings such as wave tanks [2,3], nonlinear optics [4–6],
superfluid helium [7], and plasmas [8].
The 1þ 1 dimensional nonlinear Schrödinger (NLS)

equation is a well-known model used to describe the
envelopes of generic nonlinear plane wave solutions in
one spatial dimension (corresponding to the direction of
propagation) and one temporal dimension [9]. In water
waves, the nonlinear plane wave was found by G. Stokes
in the mid-1800s [10]. Importantly, the underlying NLS
equation admits special large amplitude “rogue wave”
solutions including the Peregrine [11] and Kuznetov-Ma
(KM) solitons [12,13]. However, a more accurate wave
envelope approximation of deep water waves takes into
account the transverse variation; this is the 2þ 1 dimen-
sional NLS equation—see Eq. (1) below.
A physically significant regime in deep water waves

corresponds to small surface tension, which is described
by the 2þ 1 “hyperbolic” NLS (HNLS) equation [14].
Another important application of the HNLS equation is
spatiotemporal electromagnetc wave propagation in media
with normal dispersion, cf. Refs. [15,16]. While other more
sophisticated models do exist, NLS models can suggest
possible mechanisms that will be relevant in applications
even where NLS might not be the optimal model. We note
that other 2þ 1 water wave models are frequently used in

the study of rogue waves, such as crossing states [17–19],
but we do not discuss those phenomena here. The KM and
Peregrine solitons are known to be unstable in 1þ 1
dimensions for scalar [20,21] and vector systems [22],
but corresponding stability analysis in 2þ 1 dimensions
has not been carried out. In this case we show that both of
these solitons suffer from transverse instability.
Transverse instability of nonlinear solutions is an impor-

tant and well-known effect, e.g., the transverse instability of
localized solitons by long wavelengths was first found in
the mid-1970s [23]. By employing Floquet theory we show
that there are instabilities at arbitrarily small transverse
wavelength scales with finite growth rates. Indeed, it has
been long known that the Stokes plane wave solution of the
HNLS equation is unstable to transverse variations [24–26].
With this observation it is perhaps to be expected that the
Peregrine and Kuznetov-Ma solitons, which at large dis-
tances limit to the plane wave, will also suffer from this
serious instability. But what is remarkable is the similarity
of the instability profiles between the plane waves and KM-
Peregrine solitons, particularly at high transverse frequen-
cies. Furthermore, in the hyperbolic case these rogue waves
are found to have an instability region for all transverse
wave numbers, as opposed to a finite region instability like
the elliptic version.
We note a major difference between the instabilities

of the elliptic and hyperbolic NLS equations. The elliptic
version does not have growth rates at arbitrarily small
transverse wavelengths; this instability, first found in one-
dimensional water waves [27], is often termed modula-
tional instability [28]. Moreover, the elliptic-focusing NLS
equation with cubic nonlinearity can suffer from collapse in
finite time [29] whereas, to our knowledge, it is not known
if the hyperbolic version exhibits finite time wave collapse.
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Numerical evidence that Peregrine solitons can collapse in
the elliptic NLS equation was found in [30].
The governing NLS equation is introduced, and the

relevant soliton solutions are presented below. The stability
of plane wave solutions and KM solitons are calculated:
the former by analytic methods and the latter numerically
through Floquet theory. Direct numerical simulations con-
firm our stability findings. We conclude that a full 2þ 1
study is important for rogue wave systems when there are
two significant transverse dimensions.
Consider a plane wave envelope uðx; y; tÞ propagating

through a nonlinear dispersive media in a preferred x
direction. Going to a translating coordinate frame moving
at the group velocity and then changing variables leads to
the dimensionless NLS equation

iut þ uxx þ s1uyy þ 2s2ðjuj2 − u20Þu ¼ 0; ð1Þ

where s1; s2 ¼ �1. As jxj → ∞, u approaches a constant
u0; without loss of generality, we set u0 ¼ 1. In water
waves, the sign of the coefficients depends on the surface
tension—cf. Fig. 4.15 in [14]. For small surface tension
(ST) we have s1 ¼ −1, s2 ¼ 1, termed hyperbolic; for
moderate ST, s1 ¼ 1, s2 ¼ −1, called elliptic defocusing;
and at sufficiently large ST, s1 ¼ s2 ¼ 1, termed elliptic
focusing. The hyperbolic-focusing (s1 ¼ −1, s2 ¼ 1) and
hyperbolic-defocusing (s1 ¼ −1, s2 ¼ −1) equations are
equivalent up to the conjugation and exchange of x and y
in Eq. (1). As a result, they will yield similar stability
results below, and we shall simply refer to the “hyperbolic-
focusing” signs as the “hyperbolic” NLS equation from
here on.
There are two well-known 1þ 1 soliton solutions of the

focusing NLS equation (s2 ¼ 1) that we shall focus on. The
first is the KM soliton, which is periodic in t and localized
in x, given by

uKMðx; tÞ ¼
cosh c−xþ 1

2cþ
ðc2þ þ c2−Þ sin s − ic− cos s

cosh c−xþ 2
cþ
sin s

;

ð2Þ

where s¼cþc−t−π=2, c�¼Z�1=Z, Z > 1 [see Fig. 1(a)].
The parameters are chosen so that the soliton peak occurs
at x ¼ 0 and the largest (smallest) magnitude juKMð0; tÞj
at times t ¼ nT ½ð2nþ 1ÞT=2� for n ∈ Z, with period
T ¼ 2π=ðZ2 − 1=Z2Þ. As Z → 1, this solution approaches
the Peregrine soliton

uPðx; tÞ ¼
4x2 − 16itþ 16t2 − 3

4x2 þ 16t2 þ 1
; ð3Þ

which is localized in both x and t since T → ∞ [see
Fig. 1(b)]. At large distances both solutions approach a plane
wave, i.e., as jxj → ∞, uKM, uP → 1. In terms of the inverse

scattering transform,we assume that as jxj→�∞; juj tends to
unity sufficiently fast. This class includes the KM soliton
(with exponentially fast decay), but not the Peregrine soliton
which decays algebraically fast, cf. Ref. [31].
We now study the stability of these solitons to transverse

perturbations. Consider the two-dimensional perturbation

uðx; y; tÞ ¼ ũðx; tÞ þ wðx; y; tÞ

where ũðx; tÞ is a solution of Eq. (1) and the function w
has small magnitude. Linearizing Eq. (1) about the
solution gives

iwt þ wxx þ s1wyy þ 2s2½ð2jũj2 − 1Þwþ ũ2w�� ¼ 0; ð4Þ

where w� is the complex conjugate of w. We look for
Fourier solutions of the form

wðx; y; tÞ ¼ wþðx; tÞeily þ w−ðx; tÞe−ily:

Setting the coefficients of e�ily to zero yields

i∂twþ þ ½∂2
x − s1l2 þ 2s2ð2jũj2 − 1Þ�wþ þ 2s2ũ2w�

− ¼ 0

i∂tw�
− − ½∂2

x − s1l2 þ 2s2ð2jũj2 − 1Þ�w�
− − 2s2ðũ�Þ2wþ ¼ 0:

ð5Þ

We consider two cases: (i) modulational instability (MI)
of a plane wave where ũðx; tÞ ¼ 1 and w�ðx; tÞ ¼
α� exp½�iðkx − λtÞ� and (ii) transverse instability of the
KM soliton where ũðx; tÞ ¼ uKMðx; tÞ and w� is a Floquet
mode which satisfies

�
wþ
w�
−

�
ðx; tþ TÞ ¼ e−iλðlÞT

�
wþ
w�
−

�
ðx; tÞ ð6Þ

for Floquet exponent λðlÞ [32].
For the Peregrine soliton i.e., ũ ¼ uP, the form of the

eigenfunction w is unclear since the coefficients in Eq. (5)
are localized in both x and t. Instead we take an indirect
approach: since the KM soliton approaches the Peregrine

FIG. 1. Magnitude evolutions of the (a) Kuznetzov-Ma soliton
in Eq. (2) with Z ¼ 1.25 and (b) the Peregrine soliton in Eq. (3).
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soliton as Z → 1, we expect that the stability of KM will
also approach that of Peregrine.
For plane wave solutions, the stability system [Eq. (5)]

has constant coefficients. Looking for plane wave eigen-
modes yields the eigenvalues

λ2 ¼ ðk2 þ s1l2Þðk2 þ s1l2 − 4s2Þ ð7Þ

which correspond to linear instability when Imfλg ≠ 0.
When l ¼ 0 we recover the classic one-dimensional MI
result: unstable for s2 ¼ 1 (focusing) and stable when
s2 ¼ −1 (defocusing), cf. Ref. [28].
The two-dimensional problem corresponds to l ≠ 0

where the plane wave is stable in the elliptic-defocusing
case, s1 ¼ 1, s2 ¼ −1, and in the elliptic-focusing case,

s1 ¼ s2 ¼ 1; instability occurs when 0 < k2 þ l2 < 4:

The punctured disk region of instability is shown in
Fig. 2(a) with maximal instability of λmax ¼ �2i along
the circle k2 þ l2 ¼ 2. This is reminiscent of the classic 1D
MI result in that there is a band-limited region in the Fourier
plane corresponding to unstable wave numbers. Outside
this long wavelength region, the linear stability analysis
above does not predict any exponential growth.
In the hyperbolic equation (which corresponds to deep

water waves with small ST)

s1¼−1; s2¼1 instability occurswhenl2<k2<l2þ4:

The hyperbolic region of instability is shown in Fig. 2(b)
with the largest instability of λmax ¼ �2i along the hyper-
bola k2 − l2 ¼ 2. We see that there is instability for
arbitrarily small wavelengths, i.e., large jkj, jlj, with a
finite growth rate when k2 ¼ l2 þ γ21:

λ2 ¼ γ21ðγ21 − 4Þ; 0 < γ21 < 4:

Since the KM and Peregrine soliton limit as x → �∞ is this
unstable plane wave, we expect serious instability will also

ensue for these solitons. This is confirmed by numerical
calculations below.
The hyperbolic stability problem [Eq. (5)] is next solved

with KM coefficients [Eq. (2)] at different transverse
wave numbers using an exponential time-differencing
integrator [33]. We point out that the 1þ 1 results in
[20] correspond to the l ¼ 0 case. The imaginary (unsta-
ble) part of the Floquet exponents is shown in Fig. 3 (red
curves). Also shown are the unstable eigenvalues for plane
wave solutions (blue curves). As Z → 1, the decay rate
approaches that of the Peregrine soliton; as a result, the
computational window used to solve the problem is
widened to ensure effectively constant boundary conditions
for large jxj. One consequence of this is additional unstable
modes and faster apparent rapidity of the humps in
Fig. 3 [34].
Overall, there is remarkable overlap between the soliton

and plane wave instabilities, especially at large l. An
important observation is that KM solitons, like the back-
ground plane waves, are transversely unstable at high
frequencies. As Z → 1, the spectrum of the KM soliton is
approaching that of the plane wave, consisting of rapidly
varying periodic humplike structures bounded by 2. It is
remarkable that the stability spectrum of a Peregrine
soliton is the same as that of a plane wave. Our results
suggest that the instability of rogue waves for large trans-
verse wave numbers can be conjectured based on the
properties of the plane wave background.
The stability of the KM solitons in the elliptic-focusing

NLS equation were also computed (strong ST regime in
deep water waves). The results, shown in Fig. 4, exhibit

FIG. 2. Plane wave instability (MI): (a) Elliptic-focusing
(s1 ¼ 1 ¼ s2) and (b) hyperbolic (s1 ¼ −1, s2 ¼ 1) instability
regions and growth rates. Plotted is jImfλgj for λðk;lÞ in Eq. (7).

FIG. 3. Hyperbolic (s1 ¼ −1, s2 ¼ 1) transversely unstable
modes; blue curves, unstable plane wave modes as function of
transverse wave number l; red curves, two largest unstable KM
modes for (a) Z ¼ 2, (b) Z ¼ 1.5, (c) Z ¼ 1.25. Arrows point at
the KM soliton instability curves. At large l values, the plane
wave and KM soliton instability curves nearly overlap.
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typical instability at long wavelengths. As Z → 1, the
interval of transversely unstable KM modes shrinks, and
the maximum magnitude over all l tends to decrease and
approach 2. Similar to the hyperbolic case, the soliton
instability appears to be approaching that of the plane wave,
though not as dramatically. Unlike the hyperbolic case,
there is no instability indicated for large l. As indicated in
Fig. 3 and Fig. 4, we see that in the hyperbolic case there is
an instability regime for all transverse wave numbers
whereas the instability zone for the elliptic case has a
finite size.
Finally, we examine the evolution of transversely per-

turbed rogue waves. Consider a perturbed solution at time
t ¼ t̄ of the form

uðx; y; t̄Þ ¼ ũðx; t̄Þ þ wðx; yÞ; ð8Þ

where ũðx; t̄Þ is a line soliton solution and wðx; yÞ is a
normally distributed random function modulated by a
slowly decaying Gaussian function. The peak magnitude
of w is taken to be 10% that of ũðx; t̄Þ, and typically we
take t̄ ¼ −T=2, where the KM soliton has minimal
magnitude [34].
First, consider the KM soliton at Z ¼ 1.25; we recall it

has the instability spectrum shown in Fig. 3(c). By the time
the soliton reaches its peak magnitude at t ¼ 0, the soliton
has disappeared near the perturbation, and an “x wave” has
started to develop—see Fig. 5. We point out that this is the
result of a perturbation whose magnitude is roughly 3% the
maximum soliton peak.
Even though the solitons are unstable at large wave

numbers, they correspond to a suitable combination of
wave numbers, namely, it must be those Fourier modes in

the hyperbolic instability region shown in Fig. 2(b).
Applying a perturbation with no x dependence (k ¼ 0
modes) does not yield instability (see Ref. [34]). This is a
subtle difference from other types of transverse instability.
In further support of our analytical expectations that the

stability of the Peregrine soliton is well approximated by a
limiting KM soliton, we perform the following simulation,
highlighted in Fig. 6. Well before the maximum peak
occurs, the Peregrine soliton is perturbed by the form given
in Eq. (8). At the maximum focusing point, the line soliton

FIG. 4. Elliptic-focusing (s1 ¼ 1, s2 ¼ 1) transversely unstable
modes; blue curves, unstable plane wave modes as function of
transverse wave number l; red curves, two largest unstable KM
modes for (a) Z ¼ 2, (b) Z ¼ 1.5, (c) Z ¼ 1.25. Arrows point at
the KM soliton instability curves.

FIG. 5. Snapshots of the perturbed KM soliton (ũ ¼ uKM)
evolution (Z¼1.25, T≈6.81) for hyperbolic NLS (s1¼−1¼−s2).
Shown is juðx; y; tÞj seeded with a 10% localized perturbation
at t̄ ¼ −T=2.

FIG. 6. Snapshots of the perturbed Peregrine soliton (ũ ¼ uP)
evolution for hyperbolic NLS (s1 ¼ −1 ¼ −s2). Shown is
juðx; y; tÞj seeded with a 10% localized perturbation at t̄ ¼ −T=2
for T ≈ 6.81.
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has again broken apart near the region where the perturba-
tion is applied. We point out that perturbing the soliton
earlier will result in earlier onset of the instability and
degradation of the mode.
As a final note, these results for the hyperbolic NLS

differ immensely from those of elliptic-focusing NLS. KM
solitons are transversely unstable to long wavelength
perturbations in the elliptic-focusing NLS equation, and
also importantly, perturbed solutions can collapse in finite
time. Indeed, perturbations of the sort in Eq. (8) indicate
blowup occurs. Numerical simulations illustrating this are
given in Ref. [34].
In conclusion, transverse stability of rogue waves was

studied in the NLS equation. Linear stability of the
Kuznetsov-Ma soliton was computed via Floquet theory.
Since the Kuznetsov-Ma soliton approaches the Peregrine
soliton, it is anticipated that its instability features will also
approach those of Peregrine. Indeed, the stability of the
Peregrine soliton was found to coincide with that of the
background plane wave. Importantly, in the hyperbolic case
this leads to instability at arbitrarily high frequencies from
wave numbers in a hyperbolic region in the spectral plane.
Direct numerical solutions confirm that appropriately per-
turbed solitons are transversely unstable. Based on the above
considerations it is natural to expect that two-dimensional
perturbations can annihilate the KM or Peregrine soliton
solutions.
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