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Interferometers are widely used in imaging technologies to achieve enhanced spatial resolution, but
require that the incoming photons be indistinguishable. In previous work, we built and analyzed color
erasure detectors, which expand the scope of intensity interferometry to accommodate sources of different
colors. Here we demonstrate experimentally how color erasure detectors can achieve improved spatial
resolution in an imaging task, well beyond the diffraction limit. Utilizing two 10.9-mm-aperture telescopes
and a 0.8 m baseline, we measure the distance between a 1063.6 and a 1064.4 nm source separated by
4.2 mm at a distance of 1.43 km, which surpasses the diffraction limit of a single telescope by about 40
times. Moreover, chromatic intensity interferometry allows us to recover the phase of the Fourier transform
of the imaged objects—a quantity that is, in the presence of modest noise, inaccessible to conventional
intensity interferometry.
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Introduction.—Since Hanbury Brown and Twiss (HBT)
first proposed an ingenious method to exploit second-order
interference [1–3], there has been a revolution in high-
resolution imaging. By correlating signals collected by
separated detectors, the HBT intensity interferometer can
surpass the resolving power of individual detectors in
several diverse circumstances. HBT interferometry has
been applied in many fields ranging from astronomy to
nuclear and elementary particle physics. For example,
several large interferometers have demonstrated their supe-
riority in high-resolution imaging of astronomical targets
[4–7]. Related methods have also been used successfully to
probe nuclear collisions [8], to measure the quantum state
of Bose-Einstein condensates [9–13], and to identify
complex quantum phases in ultracold bosonic and fer-
mionic atom systems [14–16].
A drawback of conventional interferometric methods is

that they only allow interference between photons of the
same wavelength. The information encoded in the corre-
lations between photons of different wavelengths has
attracted increasing attention in recent years [17–20].
The color erasure detector is a fundamental tool to realize

chromatic interferometry [21–23] and recover the hidden
information. Unlike previous experiments in chromatic
interferometry, which implemented wavelength conver-
sion, either at the light sources themselves, or nearby
[19,24–28], our color erasure detectors operate only on
photons at the final detection stage. This feature of color
erasure detectors allows them to interface smoothly with
conventional intensity interferometry [1,8,29].
According to the van Cittert-Zernike theorem [30,31],

traditional intensity interferometry only obtains the squared
magnitude of the Fourier transform of the radiance dis-
tribution of an imaged object. This loss of phase informa-
tion poses a severe difficulty in the reconstruction of
images. Chromatic intensity interferometry not only
achieves interference between sources of different
wavelengths, but also obtains the phase of the Fourier
transform.
In this Letter, we demonstrate, theoretically and exper-

imentally, that chromatic intensity interferometry can
improve spatial resolution in imaging. In our experiment,
we spatially resolve a 1064.4 and a 1063.6 nm source
separated by 4.2 mm at a distance of 1.43 km, by measuring
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the second-order correlation of the signal light collected via
color erasure detectors.
Theory.—We determine the distance between the light

sources as follows. The two sources, labeled S1 and S2, are
positioned at r1, r2 and emit photons with wavelengths λ1,
λ2, whose frequency is f1 and f2, respectively. Suppose our
interferometer consists of two telescopes TA and TB
positioned at rA and rB, and the photons collected by them
are guided to the color erasure detectors [23] A and B,
respectively. In each color erasure detector pumped by
lasers with frequencies Δf31 and Δf32, the received f1 and
f2 photons are, respectively, up-converted into color-erased

fð1Þ3 and fð2Þ3 photons via sum-frequency generation (SFG).
After up-conversion, the phase of the pump photon will be
added to the signal photon. Mathematically, there are two
photon state conversion processes

jγf1i → eiϕ31 jγ
fð1Þ
3

i; jγf2i → eiϕ32 jγ
fð2Þ
3

i ð1Þ

in each color erasure detector, where ϕ31 and ϕ32 are the
phases of the Δf31 and Δf32 photons at the detectors,
respectively. By analyzing the phases, the electric fields at
detectors A and B can be simply described as

EAðtÞ ¼ jE1Aje−2πif
ð1Þ
3
tþiðϕs1A

þϕf1A
þϕS1

þϕ31AÞ

þ jE2Aje−2πif
ð2Þ
3
tþiðϕs2A

þϕf2A
þϕS2

þϕ32AÞ;

EBðtÞ ¼ jE1Bje−2πif
ð1Þ
3
tþiðϕs1B

þϕf1B
þϕS1

þϕ31BÞ

þ jE2Bje−2πif
ð2Þ
3
tþiðϕs2B

þϕf2B
þϕS2

þϕ32BÞ: ð2Þ

In the above formula, ϕs1A represents the phase accumu-
lated due to propagation from S1 to TA, ϕf1A is the phase
accumulated by the f1 photon due to propagation in a fiber
from TA to detector A, and so on. The initial phases of S1,
S2 are ϕS1 ;ϕS2 . A theoretical formula for the degree of
second-order temporal coherence between the light at the
two detectors is [23]

gð2ÞðτÞ ¼ hE�
BðtÞE�

Aðtþ τÞEAðtþ τÞEBðtÞi
hjEAðtÞj2ihjEBðtÞj2i

¼ 1þ ϵ

2
cos½2πðfð1Þ3 − fð2Þ3 Þτ þ ϕc�; ð3Þ

where ϵ is the visibility and ϕc is the total phase of the
intensity interference. Here ϕc ¼ ϕs þ ϕf þ ϕn is the sum
of the spatial phase ϕs due to spatial propagation from the
light sources to the telescopes, the inherent phase ϕf due to
the optical fibers that carry the pump light or signal light,
and the noise phase ϕn caused by various factors including
atmospheric disturbance and fiber deformation. Note that
ϕs changes with the positions of the light sources and the
telescopes, and its expression is [21]

ϕs ¼ ϕs1B − ϕs1A − ϕs2B þ ϕs2A

¼ 2π

λ1
ðjr1 − rBj − jr1 − rAjÞ

−
2π

λ2
ðjr2 − rBj − jr2 − rAjÞ: ð4Þ

Adjusting the direction of the interferometer baseline so
that the target falls on its perpendicular bisector, we arrive
at the geometry shown in Fig. 1, where x is the distance
between the two telescopes, L is the distance from the
target to the baseline, d is the projected distance of the two
sources onto the baseline, and α is the angle between the
perpendicular bisector of the baseline and the midpoint of
the two sources. We work in a regime where the parameters
satisfy the condition x=L; d=L; α ≪ 1. Then the specific
form of ϕs is

ϕs ¼
2πx
λh

�
θ þ αΔλ

λa

�
; ð5Þ

where λa¼ðλ1þλ2Þ=2, λh¼2λ1λ2=ðλ1þλ2Þ, Δλ¼ λ1−λ2,
and θ ¼ d=L. We can regard ϕf as a constant and ϕn as a
random variable with mean 0. If we ignore ϕn and
substitute Eq. (5) into the expression for ϕc, we find that
λhϕc=ð2πÞ is a linear function of x, that is,

λhϕc

2π
¼

�
θ þ αΔλ

λa

�
xþ const: ð6Þ

This shows that if α can be accurately determined, then we
can calculate θ from the slope of the λhϕc=ð2πÞ vs x graph

FIG. 1. Geometry of the intensity interferometer. Consider a
coordinate system with the interferometer baseline and its
perpendicular bisector as the axes. Then the telescopes TA and
TB are positioned at rA ¼ ð−x=2; 0Þ and rB ¼ ðx=2; 0Þ, respec-
tively, and the sources S1 and S2 are positioned at ðLα − d=2; LÞ
and ðLαþ d=2; LÞ in the small angle approximation, respec-
tively.
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and obtain the sought after distance between the light
sources. For our purposes, we try to reduce the value of jαj,
because when α ¼ 0, the slope of the λhϕc=ð2πÞ vs x graph
is exactly θ, which is more convenient.
In the color erasure setting, we can determine ϕc as a

function of x by measuring gð2ÞðτÞ for different x and
extract ϕc using Eq. (3). We remark that ϵ is itself a
stochastic variable subject to a complicated time-dependent
drift. In the standard setting of HBT with sources of the

same wavelength, which is equivalent to fð1Þ3 ¼ fð2Þ3 in
Eq. (3), gð2ÞðτÞ becomes 1þ ðϵ=2Þ cosðϕcÞ and it is hard to
estimate ϕc since the time dependence of ϵ is difficult to

characterize. However, when fð1Þ3 ≠ fð2Þ3 in the color
erasure setting, we can readily extract ϕc by examining
the dependence of Eq. (3) on τ, crucially even when the
time dependence of ϵ is complicated.
Experiment.—Next we turn from our theoretical setup to

an experimental demonstration of the resolution capabil-
ities of chromatic intensity interferometry. As shown in
Fig. 2, in a building L ¼ 1.43 km away from our labo-
ratory, a λ1 ¼ 1063.6 nm transmission light and a λ2 ¼
1064.4 nm reflected light form two sources separated
horizontally by d ¼ 4.2 mm. The diffraction limit of a
single 10.9-mm-aperture telescope is 1.19 × 10−4 rad when
λ ¼ 1064 nm, which means it can only resolve sources

separated by more than 0.17 m at a distance of 1.43 km. We
utilize chromatic intensity interferometry shown in Fig. 2 to
resolve the sources. In our laboratory, two 10.9-mm-
aperture telescopes are installed on two 0.4-m-long trans-
lation stages, which move symmetrically to change x from
0.16 to 0.96 m. We place this system on a rotator to adjust
the direction of the baseline to satisfy the α ¼ 0 condition.
Photons collected by each telescope are guided to color
erasure detectors of the same design as in [23]. In a pair of
parallel PPLN waveguides pumped by 1550.3 and
1548.6 nm lasers, respectively, the received photons are,
respectively, up-converted into indistinguishable (i.e.,

fð1Þ3 ≈ fð2Þ3 ) 630.8 nm photons via SFG. A time-to-digital
converter (TDC) is used to record the arrival time of these
photons at two silicon single-photon avalanche diodes
(SPADs), from which gð2ÞðτÞ can be calculated. In order
to filter out pump photons and signal photons that have not
undergone frequency conversion, we add 631 nm bandpass
filters before the two SPADs.
Results.—Taking into account the dark count rate

(∼1 kHz) and the dead time (22 ns) for the SPADs, we
adjust the power and polarization of the pump lasers to
control the SFG efficiency in each PPLN so that at different
x the counting rate of each SPAD varies from about 1 to
3 MHz. In addition, considering the time resolution
capability of the SPADs (∼1 ns), when we fine-tune the

FIG. 2. Scheme of the chromatic intensity interferometer. In the “Target” panel, two sources are coupled to free space by collimators.
The 1063.6 nm light passes through the BS and the 1064.4 nm light is reflected, forming two point sources separated by 4.2 mm. The
interferometer is 1.43 km away from the target. Two telescopes TA and TB move with a translation stage to change the baseline of the
interferometer. Photons of different wavelengths collected by TA (TB) are divided by BS1 (BS2), and coupled into PPLN1 and PPLN2
(PPLN3 and PPLN4). PPLN1 (PPLN4) is pumped by a 1548.6 nm laser, and PPLN2 (PPLN3) is pumped by a 1550.3 nm laser. The
polarization of the pump is controlled by a PC. After the SFG, the up-converted 630.8 nm photons in PPLN1 and PPLN2 (PPLN3 and
PPLN4) are combined by the BS and guided to SPAD1 (SPAD2). The arrival time of the detected photons is recorded by TDC. By
calculating the second-order correlation of the signal recorded by TDC with different baselines, we spatially resolve the two sources
separated by 4.2 mm at the target. Some abbreviations used in the figure are as follows: periodically poled lithium niobate waveguide
(PPLN), beam splitter (BS), polarization controller (PC), and wavelength division multiplexing (WDM).
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frequencies of the pump lasers, we only need to make the

value of jfð1Þ3 − fð2Þ3 j reach on the order of 10 MHz.
Figure 3(a) shows the result of performing a gð2ÞðτÞ
measurement at x ¼ 0.16 m calculated from the 0.5 s of
photon arrival events using a 5 ns time bin. We set the
software time delay so that τ ranges from −0.5 to 0.5 μs,
and its corresponding optimized fitting parameters are

fð1Þ3 − fð2Þ3 ¼ 15.79� 0.01 MHz and ϵ ¼ 0.274� 0.06.
After this step of preparation, we let the two telescopes
reciprocate symmetrically on the two translation stages,
changing x at a speed of 0.05 m=s, and at the same time we
continuously perform the gð2ÞðτÞ measurement with the
same optimized parameters. That is to say, after every 0.5 s,
when x changes by 0.025 m, a fitted value of ϕc is obtained.
Each time the telescopes move from one end of the
translation stage to the other, we obtain a dataset of
λhϕc=ð2πÞ as a function of x on the entire baseline and
linearly fit the slope θ, as shown in Fig. 3(b). We repeat this
kind of θ measurement 10 times and plot all the results in
Fig. 3(c). The experimental average θ̄ and the experimental
standard deviation of the average sðθ̄Þ are

θ̄ ¼ 3.7 × 10−6; sðθ̄Þ ¼ 2.5 × 10−7 rad: ð7Þ

The experimental error of θ here has two main factors;
we will evaluate the uncertainties caused by each factor
separately and then combine them. First, the value of ϕn
drifts randomly over time, which causes random errors in
the ϕc measurement whenever the telescope moves along
the baseline. This is a type A uncertainty that can be
evaluated by statistical methods. Regarding multiple
repeated measurements as a complete θ measurement,
the type A standard uncertainty uAðθÞ can be evaluated
as the experimental standard deviation of the average, that
is, uAðθÞ ¼ sðθ̄Þ.
Second, the systematic error in the measurement and the

adjustment of various angle parameters in the experimental

system will lead to uncertainty for the α measurements,
which is quantified as a standard uncertainty uðαÞ.
According to Eq. (6), the actual fitting parameter in our
experiment is θ þ ðαΔλ=λaÞ, so uðαÞ will result in a
type B standard uncertainty uBðθÞ, which has the form
uBðθÞ ¼ ðjΔλj=λaÞuðα ¼ 0Þ.
For our experimental system, uðαÞ is mainly determined

by the angle adjustment error of the rotator. The rotator can
drive the gear through a stepper motor to rotate the
translation stage by a minimum of about 1 × 10−3 rad
each time. We use a rectangular distribution with a half-
width of 1 × 10−3 rad to evaluate uðα ¼ 0Þ ¼
ð1= ffiffiffi

3
p Þ × 10−3 rad. Finally, we calculate the combined

standard uncertainty uCðθÞ as

uCðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2AðθÞ þ u2BðθÞ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðθ̄Þ þ

�
Δλ
λa

�
2

u2ðα ¼ 0Þ
s

¼ 5.0 × 10−7 rad: ð8Þ

The actual value of θ is d=L ¼ 2.93 × 10−6 rad, which falls
within 2 standard deviations of the experimental result.
This result shows that the two light sources at the target are
successfully resolved, indicating that our interferometer
can measure an angular distance that surpasses the dif-
fraction limit of a single telescope by about 40 times.
As a summary, in our Letter, we demonstrate the

capability of chromatic intensity interferometry to achieve
enhanced spatial resolution in a regime where existing
imaging techniques fail. The main advantages of our
scheme are that it expands the range of intensity interfer-
ometry to the multiwavelength setting and gives us access
to the phase of the Fourier transform of the imaged objects.
Discussion.—To further improve spatial resolution, chro-

matic intensity interferometers should be carefully
designed to eliminate the internal phase noise, and Δα

FIG. 3. Experimental data for the chromatic intensity interferometer. (a) A plot of the gð2ÞðτÞ measurement at x ¼ 0.16 m with
optimized parameters. The orange curve is a least squares fit to the measured data (blue dots). (b) A graph of λhϕc=ð2πÞ as a function of x
on the entire baseline. The orange line is a least squares fit to the measured data (blue dots). The slope of the fitted line provides a
measurement of θ. This set of data corresponds to the fifth point in (c). (c) Shown are 10 measurements of θ and their distribution. The
vertical position of the orange solid line is the actual value of θ, and the vertical position of the orange dashed line is the average of these
measurements (blue dots).
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should be pushed as low as possible. If we can further
suppress the phase noise and increase the number of
repeated measurements, the fitting of λhϕc=ð2πÞ as a
function of x will become more accurate. This will result
in a decrease in uAðθÞ, which would enable the interfer-
ometer to achieve a higher spatial resolution. Equivalently,
a low signal-to-noise ratio would make ϕc more sensitive to
small changes in x, so that the same level of spatial
resolution could be achieved with a shorter baseline and
fewer repeated measurements.
However, uBðθÞ cannot experimentally be reduced by

using a longer baseline and performing more repeated
measurements. Theoretically, the spatial resolution limitΔθ
of the chromatic intensity interferometer when uAðθÞ ¼ 0
has the form Δθ ¼ ðjΔλj=λaÞΔα, where Δα generally
represents the accuracy of targeting. In this case, Δα
depends on the optical limit of the system. If we use a
telescope with an aperture of diameter D to measure the
direction of a distant unknown target, the accuracy will be
at the order of λ=D. In the case of jΔλj ≪ λa, we have
λ1 ≈ λ2 ≈ λa ¼ λ. Then an estimate of the spatial resolution
limit is Δθ ∼ ðjΔλj=DÞ.
In the coming future, with the development of high-

precision time-frequency transmission [32], long-baseline
intensity interferometry [33] will realize its advantage over
other methods. If combined with telescope arrays [7,34,35],
color erasure detectors could help with the detection of
astronomical targets with nontrivial color distributions or
varying doppler shifts [36]. For laser illumination imaging
of space objects [37,38], if we illuminate space debris with
lasers of different colors and utilize color erasure detectors,
it may be possible to reconstruct features of the target that
are otherwise inaccessible using other methods.
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