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Magnetic monopoles have long been predicted in theory and could exist as a stable object in our
Universe. As they move around in galaxies, magnetic monopoles could be captured by astrophysical
objects like stars and planets. Here, we provide a novel method to search for magnetic monopoles by
detecting the monopole moment of Earth’s magnetic field. Using over six years of public geomagnetic field
data obtained by the Swarm satellites, we apply Gauss’s law to measure the total magnetic flux, which is
proportional to the total magnetic charge inside Earth. To account for the secular variation of satellite
altitudes, we define an altitude-rescaled magnetic flux to reduce the dominant magnetic dipole contribution.
The measured magnetic flux is consistent with the existing magnetic field model that does not contain a
monopole moment term. We therefore set an upper limit on the magnetic field strength at Earth’s surface
from magnetic monopoles to be jBmj < 0.13 nT at 95% confidence level, which is less than 2 × 10−6 of
Earth’s magnetic field strength. This constrains the abundance of magnetically charged objects, including
magnetic black holes with large magnetic charges.
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Introduction.—As proposed by Dirac close to a century
ago [1], the magnetic monopole is a fascinating physical
object that could elegantly explain the quantization of
electric charges in nature. Ever since, physicists have been
studying magnetic monopoles both from theoretical and
experimental directions. On the theory side, the discovery
of Polyakov–’t Hooft monopoles in 1974 [2,3] has been
applied to grand unified theories (GUTs) [4], which predict
the GUT monopole mass around 1017 GeV. Lighter masses
near the electroweak scale have also been proposed and
searched for [5–7]. For heavier masses above the Planck
mass scale, magnetically charged black holes have long
been proposed, which can have masses proportional to their
magnetic charges [8–10]. Various experimental methods
have been adopted to search for magnetic monopoles, e.g.,
detecting the quantized jump in magnetic flux when
monopoles pass a superconducting quantum interference
device [11] and searching for the Cherenkov light gen-
erated when the accelerated monopoles pass the large
IceCube detector [12]. Magnetic monopoles could also
be captured by stars and planets including our Earth, and
their annihilations can produce detectable neutrinos and/or
heat [13–15] (see also [15–18] for further constraints).

In this Letter, we present a new way to search for magnetic
monopoles by measuring the magnetic monopole moment
of Earth.
Ever since the classical 1839 paper by Gauss [19] (see

[20] for English translation), measurements indicate Earth’s
magnetic field is dominantly dipolelike with subleading
contributions from higher moments. Although the general
spherical harmonics formula developed by Gauss contains
the monopole moment [19], it has been assumed to be zero
because the traditional Maxwell equations lack magneti-
cally charged objects.
To measure different magnetic moments, including the

monopole moment of Earth, one could perform a global fit
like the one used for the International Geomagnetic
Reference Field [21]. In this Letter, we adopt a simpler
approach and apply Gauss’s law to Earth’s magnetic field to
obtain the total magnetic flux, proportional to the enclosed
magnetic charge. We analyze the more than six years of
publicly available data by the European Space Agency
Swarmmission [22,23], which consists of three satellites in
low-Earth near-polar orbits measuring the vector mag-
netic field.
Measuring the monopole moment.—For a single object

or a group of objects with a total magnetic charge of Q at
the center of Earth, Earth’s magnetic field has a monopole
moment of BmðrÞ ¼ ½ðQgÞ=4πr2�r̂ ¼ ðQ=2er2Þr̂, where
e ¼ ffiffiffiffiffiffiffiffi

4πα
p

with α ≈ 1=137 as the fine-structure constant
and g ¼ 2π=e ≈ 68.5e ≈ 21 is the magnetic coupling. For
equations, we use natural units with ℏ¼c¼ε0¼1, although
numerical values are expressed in the International System
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of Units. Q ¼ 1 is the minimal magnetic charge, corre-
sponding to the Dirac quantization condition with eg ¼ 2π
[1]. Numerically, Bm≈0.082nT×ðR⊕=rÞ2ðQ=1019Þ, where
R⊕ ≈ 6371.2 km is the average radius of Earth. For
comparison, the measured Earth surface intensity has a
magnitude of up to ≈ 65000 nT.
To measure the magnetic charge, one could adopt

Gauss’s law
H
BðrÞ · dA ¼ Qg. This requires a full-sky

measurement of the magnetic vector field. For convenience,
one could choose the manifold to be a sphere of radius R
centered on Earth. Then, dA ¼ R2n̂dΩ with n̂ as a unit
surface vector pointing outward and dΩ ¼ sin θdθdϕ in
spherical coordinates. For magnetic monopole objects,
B̄m ≡ ð1=4πÞ H Bmðr; θ;ϕÞ · n̂dΩ ¼ Qgð1=4πR2Þ. Here,
we have defined a solid-angle averaged magnetic field
B̄, which is simply the amplitude of the monopole magnetic
field at radius R. All higher multiple moments beyond Bm

do not contribute to B̄.
In practice, the measurement of magnetic field is not

performed at a uniform radius—the Swarm satellite orbits
have a variation of Oð1%Þ during one orbit and decay over
time. Thus, it is not possible to integrate the magnetic flux
along a perfectly spherical closed manifold, and the
surface’s normal vector n̂ will not match the radial
coordinate unit vector r̂. So, a numerical integration ofR
Bðr; θ;ϕÞ · r̂dΩ will not be zero, even in the absence of a

monopole term (for Swarm’s orbital parameters,
B̄ ≃ −70 nT, see the Supplemental Material [24]). To
suppress this measurement-induced dipole contribution,
we use the following modified Gauss law to measure the
magnetic field from the monopole charge:

B̄ ¼ 1

4π

Z �
rðθ;ϕÞ
Rref

�
3

Bðr; θ;ϕÞ · r̂dΩ: ð1Þ

Here, rðθ;ϕÞ is the radius of the magnetic measurement at
different angular directions and Rref is a fixed reference
radius. For the dipole component, this is formally equiv-
alent to integrating on a perfectly spherical surface at
r ¼ Rref , so n̂ ¼ r̂ and the dipole component contributes
zero to the above quantity. Note that Earth’s higher-moment
magnetic fields have nonzero contributions to the quantity
B̄ because the higher moments scale with higher powers of
r. For instance, the quadrupole moment has a magnitude of
Oð10%Þ of the dipole moment and contributes around
0.5 nT for B̄ using Swarm’s orbit. Therefore, the r3 scaling
in Eq. (1) is practically useful to improve the sensitivity of
searching for the monopole moment because it reduces
contributions to B̄ from the dipole and higher moments
while preserving the monopole signal.
Data analysis.—We use the VirES architecture to access

the data via the PYTHON package VIRESCLIENT [25].
Magnetic field measurements are used from the Swarm
L1b 1 Hz data product. When selecting data, we take the

following considerations. Because of a sensor failure in
Swarm C, we only use the data from the other two satellites,
Swarm A and Swarm B. Bad data are removed using the
Flags_F filter, and only nonzero vector data for which
the magnetic activity level Kp ≤ 3 are included to reduce
the impact of the Sun (following the procedure in
Refs. [26,27]). Unlike other analyses, we do not impose
a cut on the Sun’s elevation angle above the horizon, as this
would prevent us from obtaining full 4π sky coverage
(particularly near the poles).
To calculate B̄, the measurements are binned into a × a

degree angular patches and d-day-long time bins. If the
satellites do not cover all a × a degree patches within a
given d-day time bin, that bin is not used. Because of the
orbital inclinations (87.4° for Swarm A and 88° for Swarm
B), the regions closest to the poles are never measured;
therefore, the patches closest to the poles are imposed to
have size 3°ðlatitudeÞ × a°ðlongitudeÞ when a < 3. We
index the individual measurements, angular patches, and
time bins by i, j, and k, respectively. To estimate the
magnetic flux for a given time bin, we first rescale the
measurements of the magnetic field in the radial direction
Br to a common radius Rref ¼ 6850 km, the average
radius of both satellites for the mission duration thus

far, as Br;iðθi;ϕiÞ ¼ Br;iðri; θi;ϕiÞðri=RrefÞ3. Then, we
average every rescaled measurement of the magnetic field
in the radial direction within each angular patch
hBrij ¼ N−1

j

P
ijðθi;ϕiÞ∈patchj Br;iðθi;ϕiÞ, with Nj as the

number of measurements in patch j. These patch
averages are then summed together, weighted by the
area of each patch, to obtain B̄ ¼ P

j hBrijwj, with
wj ¼ ð4πÞ−1 Rpatchj sin θdθdϕ. To obtain an estimate of
the statistical error, the squared standard error of the
mean is calculated for each angular patch as
σ2j ¼ ðNj − 1Þ−1N−1

j

P
ijðθi;ϕiÞ∈patch j½Br;iðθi;ϕiÞ − hBrij�2.

We have checked that the errors in each measurement,
which are of order few nanotesla [26], are trivial compared
to the errors from having different measurements at differ-
ent positions and times within each patch. These errors are
weighted summed in quadrature to obtain the squared error
of the total flux σ2 ¼ P

j σ
2
jw

2
j . For each time bin k, this

procedure yields an estimate for B̄k and its statistical
uncertainty σk. The error for each time bin scales as σk ∝ a.
The approach outlined above contains several systematic

errors, so B̄ cannot be identified with B̄. These include the
imperfect spherical coverage, which depends on the orbital
path taken, the finite angular patch size used to numerically
integrate (1), the finite time bin size when compared against
the nonstatic nature of the fields, and the other magnetic
field components besides the dominant dipole component
that are not canceled using the r3 rescaling in (1). On the
other hand, the existence of a monopole moment will lead
to a deviation between data and model, as the current
models do not include the monopole term. Therefore, a
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better quantity to analyze would be B̄dif
k ¼ B̄dat

k − B̄mod
k ,

which reduces the systematic errors and manifests
the deviation simultaneously. For each time bin k,
we add the data and model uncertainties in
quadrature ðσdifk Þ2 ¼ ðσdatk Þ2 þ ðσmod

k Þ2, then average
hB̄difi¼ðσdifÞ2PkB̄

dif
k =ðσdifk Þ2. The squared error of

hB̄difi is ðσdifÞ2 ¼ ½Pk 1=ðσdifk Þ2�−1.
When the variation between time bins is larger than

their statistical uncertainties would suggest, we enlarge
the overall uncertainty by the Birge ratio [28,29]
rB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=ðNk − 1Þ

p
or σ ¼ max½1; rB�σdif, with χ2 the

goodness of fit and Nk the number of time bins. When
rB > 1, this enlarged error is essentially equivalent to the
standard error of the mean of hB̄difi, i.e.,
ðσsemÞ2 ¼ ðNk − 1Þ−1N−1

k

P
kðB̄dif

k − hB̄difiÞ2. Note, σsem

is irreducible in the limit a → 0 provided a is small enough
for each time bin’s measured B̄dif

k to stabilize numerically
(but not so small that there are empty angular patches
without measurements). It can be interpreted as including
additional variability effects not included in the purely
statistical error, including different orbital paths or accep-
tance cuts in each time bin [30].
Model prediction.—To provide a sense of how much

each component of Earth’s field contributes to our estimate
of the flux, the various contributions are summarized in
Table I, showing the prediction for hB̄modi (the time average
of the model alone) from various components of
the CHAOS-7 model [27] using a ¼ 2, d ¼ 180, and
Kp ≤ 3 (see also the shaded bands in Fig. 1). The core
component is separated into the dipole and higher
moments. The second column shows the calculation under
idealized conditions where all measurements are taken at
the same time and on an equal-radius sphere, with ðθ;ϕÞ
still matching the satellite measurements. These terms
formally go to zero when a → 0, so they can be interpreted
as the systematic error from the discretization of the angular
integral. The crust and external components contribute
negligibly (see details in the Supplemental Material [24]).

The third column uses the actual variation in the satellite
altitude and rescales the field by ðr=RrefÞ3 as in Eq. (1), but
still removes time dependence. This shows the error
introduced by the r3 rescaling. Note, the dipole results
match whether taken on a sphere or rescaled because the
two operations are mathematically equivalent. The dipole
dominates the full model’s error because its overall con-
tribution to the field is larger, and its value is consistent
with zero. On the other hand, the higher core moments have
much larger hB̄modi when calculated at the satellite radius
(compared with both the dipole and higher-moment cal-
culation on sphere) because higher moments are propor-
tional to r−n with n > 3. Thus, higher moments provide the
dominant contribution to hB̄modi. Unlike the on-sphere
calculation, there is relatively little suppression of hB̄modi as
a → 0 because of the saturated contribution from the higher
moments when evaluated at the satellite radius. Finally, the
last column shows that time dependence is a subdominant
effect for most of the model components.
Results.—Values for a and d are chosen for numerical

stability in the calculation of both hB̄difi and its uncertainty
and to obtain good agreement between all time bins and the
average value. These tend to prefer larger d and smaller a,
although a cannot be too small so that all angular patches
are measured within each time bin. In general, as shown in
the Supplemental Material [24], any value of a between 2
and 0.3 gives similar results for large enough d (with the
requisite d increasing with decreasing a). They are also
robust against the choice of Kp cut.
Using a ¼ 2 and d ¼ 180, the average difference

between the data and model is hB̄difi ¼ 0.022� 0.046 nT,
with a goodness of fit to the mean χ2 ¼ 16.2with Nk − 1 ¼
12 degrees of freedom. The quoted uncertainty has been
marginally enhanced by the Birge factor from the purely
statistical uncertainty of 0.039 nT. Full-sky coverage is
obtained in each time bin. A plot of the measurements in
each time bin for both data and model is shown in Fig. 1,
along with the contributions from the dipole and higher
moments individually. The data and model follow each

TABLE I. Values for the average flux hB̄modi and its 1σ statistical error in nanotesla from various model components in the CHAOS-7
model [27] of Earth’s magnetic field, evaluated along the satellites’ trajectories and spanning the time period from February 1, 2014 to
June 29, 2020. The second and third columns remove the model’s time dependence and, respectively, assume either the measurements
are taken on a sphere with fixed radius or at the satellite radii and rescaled by ðr=RrefÞ3 as in (1). The final column uses the satellite radii
and includes the model’s time dependence. Results are for a ¼ 2, d ¼ 180, and Kp ≤ 3.

Model component On sphere At satellite radius
Same time Same time Time dependent

Lithosphere −0.000033ð�24Þ −0.000087ð�26Þ −0.000087ð�26Þa
External −0.0000088ð�66Þ 0.013� 0.000008 0.022� 0.0001
Core dipole 0.032� 0.025 0.032� 0.025 0.030� 0.025
Core higher moments −0.20� 0.01 −0.56� 0.01 −0.57� 0.01
Full model −0.17� 0.03 −0.51� 0.03 −0.52� 0.03
aThe lithosphere component is time independent by model assumption.
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other very closely. The model’s value is dominated by the
core’s higher moments, but its uncertainty is dominated by
the core’s dipole moment because of the dipole’s much
larger overall contribution to the magnetic field. If a is
decreased, as shown in the Supplemental Material [24], the
statistical error bars for individual time bins shrink, but the
overall error is dominated by the variation between time
bins and levels off.
Because no significant difference between the data and

model is found, we perform a signal injection (adding a
monopole component into the model and increasing it until
the model becomes incompatible with data) to set a bound
on the magnitude of the monopole component field at
95% confidence level: −0.07 < Bmðr ¼ RrefÞ < 0.11 nT,
in agreement with the 2σ range of hB̄difi. This translates
into an upper bound on the monopole component field at
Earth’s surface jBmðr ¼ R⊕Þj < 0.13 nT and on the net
magnetic charge jQnetj < 1.6 × 1019 ≡Qmax.
Constraints on magnetic monopole objects.—One can

apply the constraints on the total net magnetic charge
jQnetj < Qmax into various fundamental theories that pre-
dict magnetic monopole objects with different charge-to-
mass ratios, which we parametrize by q≡Q=Qext with
Qext ¼ eM=½cosðθWÞ

ffiffiffi
π

p
Mpl� ≈ 0.19M=Mpl. Here, Qext is

the charge of an extremal magnetic black hole with an

electroweak symmetric corona of mass M [10,15], with
Mpl ¼ 1.22 × 1019 GeV=c2 as the Planck mass, θW as the
weak mixing angle, and e as the electric coupling constant.
A magnetic black hole has q ≤ 1 (saturated to equality in
the extremal limit) and M > Mpl. Because magnetic black
holes can efficiently Hawking radiate into electrons if their
temperature is sufficiently large, they satisfy q ∼ 1 when-
ever M ≲ 1017 g [10,15,18], but can take on any q ≤ 1 at
larger masses. Conversely, a monopole particle has q > 1
according to the weak gravity conjecture [31]. While a
GUT monopole with Q ¼ 2 and mass M ≃ 1017 GeV=c2

has q ≃ 1300, a gravitating composite monopole object
with a large magnetic charge could have much larger mass
with both small and large q [32]. Therefore, we treat q and
M as free model parameters to set limits.
During Earth’s lifetime, it will have captured N ≈ 3800f

(1015 g=M) monopoles, with f ¼ ρ=ð0.4 GeV cm−3Þ the
local monopole energy density ρ as a fraction of the local
dark matter density [15,33]. When N ≥ 1, the net charge of
captured monopoles is Qnet ≃

ffiffiffiffi
N

p
Q. Thus, the constraint

jQnetj < Qmax can be expressed as a limit on the
local density of monopoles: f ≲ 8.8 × 10−4q−2½Qmax=
ð1.6 × 1019Þ�2ð1015 g=MÞ, valid in the regime

FIG. 1. Average value and error of B̄ in 180-day bins using 2°
angular patch size covering the time period from February 1,
2014 to June 29, 2020. Data from Swarm A and B were
incorporated, with the selection criteria Kp ≤ 3. In the top panel,
the blue and yellow lines indicate the contribution from the core’s
dipole and higher moments, respectively, to the model prediction,
with the shaded bands giving their errors. The hatched regions
show the total model predictions with errors. Data are shown by
black points. In the lower panel, the differences between the data
and model are shown, and the dashed line indicates the mean. All
error bars are 1σ and include only statistical error.

FIG. 2. Bounds on the local energy density of magnetic
monopoles as a fraction of the local dark matter density. Black
shaded area is the bound from Earth’s magnetic monopole
moment, bounding Earth’s net magnetic charge by
Qmax ¼ 1.6 × 1019. Green is the M31 Parker bound [15]. Solid
is q ¼ 1, while dashed is q ¼ 0.1. To the left of the gray dashed
line, magnetic black holes must be close to the stable extremal
state (q ∼ 1), though other magnetically charged objects with
different q could exist.
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f ≳ 2.6 × 10−4ðM=ð1015 gÞÞ. This is depicted in Fig. 2.
Also shown is the Parker bound [34,35] derived from
M31 in [15], f ≲ 6 × 10−3q−2, which disappears when
q < 0.08. The limit presented here is complimentary to
other limits—for example, from gas heating and white
dwarf destruction [18]—in that it is a direct measurement as
opposed to an inference from difficult-to-model astrophysi-
cal systems.
Discussion.—The Earth’s magnetic field provides an

interesting way to search for new physics. Using satellite-
based measurements, we have shown it is possible to
estimate a bound on the magnetic flux with a modified
version of Gauss’s law. Even without any knowledge of the
higher multiple moments, the monopole moment can be
constrained at the level of O ðnTÞ [the value for B̄ when r3

rescaling as in (1) is employed], and comparing to a model
of the higher moments allows for bounds an order of
magnitude stronger. This suggests that future model fits
should include the possibility of a monopole term.
Combining a global fitting technique with data from more
observatories would provide the best achievable bound
with present technology. We encourage future work in this
direction to build on the work presented here. Mars, which
also has satellite-based measurements of its magnetic field
[36], could be another interesting target for future work.
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